India upgraded its reconnaissance capabilities through the launch of a RISAT-2B radar imaging satellite Wednesday. Liftoff from the Satish Dhawan Space Centre aboard a PSLV rocket occurred at 05:30 local time (00:00 UTC), with the launch lasting fifteen and a half minutes from liftoff to spacecraft separation.

BY The satellite launched on Wednesday was the first in a fleet of RISAT-2B satellites that will succeed India’s ten-year-old RISAT-2 spacecraft. Equipped with X-band radar imagers, RISAT-2B will monitor the Earth day and night, in any weather conditions. Two or three RISAT-2B spacecraft are expected to launch this year, while another satellite, the larger RISAT-2A, will join the constellation in 2020.

The RISAT constellation is operated by the Indian Space Research Organisation (ISRO). While ISRO state the satellites’ applications as supporting agriculture, forestry and disaster management, their primary purpose is military surveillance.

RISAT uses a technique called Synthetic Aperture Radar (SAR) to build images of the Earth below it. Signals transmitted from the satellite are reflected from the surface and its echo is recorded when it reaches back to the satellite. These signals can then be processed to build a profile of the ground below.

Radar imaging is important for surveillance applications, as it does not require sunlight or clear skies to be able to observe its target. Optical imaging satellites are only able to see points of interest when they are illuminated by the sun and not hidden by cloud, whereas a spacecraft equipped with SAR can still observe at night and its radio waves can propagate through cloudy skies.

India is not the only country to use radar imaging for military reconnaissance – other systems currently in operation include the United States’ TOPAZ constellation, Japan’s IGS Radar and Italy’s COSMO-SkyMed. SAR has also been used on civilian scientific and commercial satellites and on interplanetary probes.

The satellite aboard Wednesday’s launch will be a replacement for RISAT-2. The original RISAT-2 was built for ISRO Israel Aerospace Industries (IAI), and is based on the Polaris satellite (also known as TecSAR or Ofeq 8) which ISRO had launched for Israel in 2008.

India’s partnership with Israel on this satellite boosted its radar imaging technology, and provided an initial capability ahead of the launch of India’s indigenously-developed RISAT-1. Newer satellites, including RISAT-2B, have been developed by ISRO.

At least two RISAT-2B satellites are being launched, aboard separate rockets, to modernize and enhance India’s radar imaging fleet. The RISAT-2BR1 and RISAT-2BR2 satellites have been announced and despite all official publications surrounding Wednesday’s launch referring to the satellite as only “RISAT-2B”, it is likely that this satellite is RISAT-2BR1.

With recent military launches, ISRO has typically used the generic name for the class of satellite – such as CartoSat-2, instead of naming the specific satellite (e.g. CartoSat-2E). Alternatively, Wednesday’s payload could be RISAT-2B, with the RISAT-2BR1 and 2BR2 launches both to come later in the year. Because of the confusion, this article refers to the satellite as RISAT-2B in the generic sense of the designation.

With a mass of 615 kilograms (1,356 pounds) each, the RISAT-2B satellites are about twice as heavy as RISAT-2, although like their predecessor they are designed to operate for at least five years. RISAT-2 has already surpassed this, having been in orbit since its launch in April 2009.

India’s radar imaging program includes satellites operating in the X-band – the RISAT-2 series – and also the lower-frequency C-band. RISAT-1 was the first C-band satellite ISRO operated. It launched in April 2012 but reportedly failed after four and a half years in orbit. A replacement, RISAT-1A, is scheduled for launch towards the end of 2019.

ISRO used a Polar Satellite Launch Vehicle (PSLV) to conduct Wednesday’s launch, placing its RISAT-2B payload into low Earth orbit. The four-stage PSLV flew in its Core Alone (PSLV-CA) configuration, the lightest of several versions of the rocket.

First flown in September 1993, the PSLV is the workhorse of India’s space program. Using a mixture of solid and liquid-fuelled stages, it was designed to carry satellites to polar and sun=synchronous low Earth orbits, however over the last two and a half decades it has proven its versatility, sending satellites towards geosynchronous transfer orbit and deploying probes bound for the Moon and Mars. Wednesday’s launch marks PSLV’s forty-eighth flight.

PSLV can fly in different configurations depending on the mass of its payload and the target orbit it is aiming to achieve. These configurations vary the number and type of solid rocket boosters attached to the rocket’s first stage, while the four core stages remain the same across all configurations.

The Core Alone (CA) version of the rocket, which will perform Wednesday’s launch, does not use additional boosters, while the PSLV-DL, PSLV-QL and PSLV-XL use two, four and six PS0M-XL boosters respectively. The PSLV-G configuration, which was used for all launches prior to 2007 but has flown with a decreasing frequency since and not at all since 2016, uses six of the smaller PS0M boosters.

In forty-seven launches to date, PSLV has achieved success forty-four times. Despite the failure of its maiden flight, and a partial failure its first operational launch four years and three missions later, PSLV went on to record thirty-six consecutive successful launches from 1999 to 2017.

During August 2017’s PSLV-C39 mission the rocket’s payload fairing failed to separate, leaving the IRNSS-1H satellite in the wrong orbit and unable to deploy, however since then PSLV has completed a string of another six successful launches.

The flight number of the rocket that made Wednesday’s launch was PSLV-C46. It was the fourteenth PSLV to fly in the Core Alone configuration, and the third PSLV to launch in 2019. The rocket departed from the First Launch Pad (FLP) of the Satish Dhawan Space Centre on Sriharikota Island.

Formerly the Sriharikota High Altitude Range, this facility has been the launch site for all of India’s orbital launches beginning with the country’s first launch attempt with a Satellite Launch Vehicle (SLV) and the Rohini Test Payload in August 1979.

The SLV and later Augmented Satellite Launch Vehicle (ASLV) flew from now-disused complexes to the south of the modern launch pads at Satish Dhawan. The First Launch Pad was constructed in the early 1990s for the PSLV, and has also been used by Geosynchronous Satellite Launch Vehicle (GSLV) rockets in the past. PSLV can also fly from the adjacent Second Launch Pad (SLP), which it continues to share with the GSLV.

When launching from the First pad, PSLV rockets are assembled vertically in position on the launch pad using a mobile service tower. Buildup of PSLV-C46 began after the last launch from the pad – January’s PSLV-C44 mission that carried Microsat-R into orbit – with the rocket’s stages being stacked one atop another with the payload fairing – encapsulating the RISAT-2B satellite at the top.


Synthetic Aperture Radar (SAR) or SAR Journal is an industry trade journal which tracks the worldwide SAR industry. We offer news, education, and insights to the SAR industry. We are operated, moderated and maintained by members of the SAR community.This profile is run by multiple moderators who all represent the If you would like to submit news or have questions about a post please email us here: and someone will get back to you.

Leave a Reply

Your email address will not be published. Required fields are marked *