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Abstract

This thesis is concerned with problems related to SyntheticAperture Radar
(SAR), a technique of making images of the surfaces of planets using electro-
magnetic waves. Reconstructing images of the surfaces fromthe gathered data is
an inverse problem as are other young and thriving imaging techniques used for
example in optical tomography and transient elastography.In optical tomography
one tries to create images of the human body employing light,whereas in tran-
sient elastography ultrasound is used to measure the propagation of shear waves
and thus reconstruct the stiffness of human tissue. But the field of inverse prob-
lems covers older and established topics as well like computerized tomography
that creates images of the human body by means of x-rays and magnetic reso-
nance imaging using electromagnetic fields to measure the distribution of atoms.
All these very different applications have in common that the gathered data is
difficult to interpret. Therefore mathematical processingis necessary in order to
create an intelligible image of the measured object. Some ofthe problems related
to this mathematical processing necessary in creating SAR-images are analyzed
in this thesis.
The thesis is structured as follows: The first chapter explains what SAR is, and
the physical and mathematical background is illuminated.
The following chapter points out a problem with a divergent integral in a common
approach and proposes an improvement. Some numerical comparisons are shown
that indicate that the improvements allow for a superior image quality.
Thereafter an important problem is analyzed - the problem oflimited data. In
a realistic SAR-measurement the data gathered from the electromagnetic waves
reflected from the surface can only be collected from a limited area. However the
reconstruction formula requires data from an infinite distance. The chapter gives
a comprehensive analysis of the artifacts which can obscurethe reconstructed
images due to this problem. Additionally, some numerical examples are shown
that point to the severity of the problem.
In chapter 4 the fact that data is available only from a limited area is used to
propose a new inversion formula. This inversion formula hasthe potential to make
it easier to suppress artifacts due to limited data and, depending on the application,
can be refined to a fast reconstruction formula.
In the penultimate chapter a solution to the problem of left-right ambiguity is
presented. This problem exists since the invention of SAR and is caused by the
geometry of the measurements. This leads to the fact that only symmetric im-



ages can be obtained. With the solution from this chapter it is possible to recon-
struct not only the even part of the reflectivity function, but also the odd part, thus
making it possible to reconstruct asymmetric images. Numerical simulations are
shown to demonstrate that this solution is not affected by stability problems as
other approaches have been.
The final chapter lists some conclusions drawn from the preceding chapters and
develops some continuative ideas that could be pursued in the future.
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Chapter 1

Introduction

This chapter will give a short introduction into the mathematical and physical
concepts necessary to deal with SAR. After a closer look at the mathematical
terms of well-posed versus ill-posed and direct versus inverse problem, the second
section will describe the physical and technical background related to SAR. The
last section will then give an introduction to the mathematical model of the inverse
problem involved in SAR.

1.1 Inverse problems

From a mathematician’s point of view the problems associated with SAR be-
long to the field of inverse problems. It is difficult to exactly define the term
inverse problem. Therefore to begin with, the closely related ideas of well- and
ill-posedness and the concept of stability will be illuminated. To this end a trip
into history might prove helpful. The scientific community was aware of the prob-
lem of instability as early as 1873 when Maxwell wrote in an essay from February
11th, 1873 [1, p. 434]:
"There are certain classes of phenomena, as I have said, in which a small error
in the data only introduces a small error in the result. ... The course of events
in these cases is stable. There are other classes of phenomena which are more
complicated, and in which cases of instability may occur, the number of such
cases increasing, in an exceedingly rapid manner, as the number of variables in-
creases."
The concept of a well-posed problem was first formulated by Hadamard in 1902
[2]. A well-posed problem according to Hadamard requires the existence, unique-
ness and stability of a solution, originating from the philosophy that the mathe-
matical model of a physical problem has to have these properties. If one of the
properties fails to hold, a problem is called ill-posed. Dueto this background only
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well-posed problems were studied extensively for quite some time and ill-posed
problems were neglected.
This led to a vast knowledge of and familiarity with direct problems which are
usually well-posed. These are problems that are common in physics with an input
x and an operatorH modelling the physical system. In these cases it is the goal
to find the system’s responsey = Hx. Therefore they are called direct problems
as it is the classical physical problem to have a system stateand let it evolve ac-
cording to a certain formula. The term inverse problem is derived from this notion
of direct problems. The corresponding inverse problems consist in determining
the causex for a known systemH and a known responsey or in determining pa-
rameters of the systemH for a known inputx and a known responsey. Unlike
direct problems that are usually well-posed, inverse problems are often ill-posed.
Inverse problems are relevant for many different physical applications, for exam-
ple problems related to imaging. One of these applications is SAR which will be
described in detail in the following.

1.2 Physical background

Synthetic Aperture Radar is a technique of taking pictures of the surface of planets
from an airplane or satellite. As the name indicates, SAR utilizes Radar, electro-
magnetic waves with a much longer wavelength than used in optical imaging.
These waves are emitted by antennas mounted on the airplane or satellite. They
are then reflected from the surface and detected by the same antennas. The use
of such large wavelength leads to a great advantage in comparison with photog-
raphy. Since waves of these wavelengths can penetrate clouds and even foliage,
SAR images can be taken in foggy or cloudy weather. This capability is demon-
strated in figure 1.1 that shows in both images the region of Waterford in Ireland
on the morning of August 9th, 1991. The left picture shows an optical image that
is almost completely obscured by clouds whereas the SAR image on the right is
not at all affected by them. This is an important feature since in Europe only one
out of ten optical images is free of clouds [3]. However, thiscomes at the cost of
a reduced resolution compared with optical imaging.
The typical frequency used in SAR is largely dependent on thetechnical imple-
mentation. Commonly frequencies ranging from 20 MHz to 10 GHz are used [4],
[5]. This corresponds to wavelengths of 15 m to 3 cm. They evenpermit to detect
concealed object, e. g. covered by trees, and to measure the biomass of a region
[4].
An example of a SAR system is CARABAS. This is an airborne VHF SAR system
developed by the FOA (National Defence Research Establishment) in Sweden.
CARABAS consists of two5.5 m long antennas mounted parallel on a Rockwell
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Figure 1.1: Waterford (Ireland) on the morning of August 9th, 1991. Left: Optical
Landsat satellite image. Right: SAR ERS-1 satellite image.Source: [3]

Sabreliner aircraft. The distance of the antennas corresponds to the shortest emit-
ted wavelength and translates to three meters since the usedfrequency spectrum
ranges from20 to 90 MHz. The airplane usually travels at a height of1500 to
10000 m at a speed of100 to 130m

s [4]. For a frequency of70 MHz theoretically
the best achievable resolution is1 m parallel to the flight track and2 m perpendic-
ular to the flight track [6]. However it turned out that for real measurements the
resolution obtainable is only half as good [7].

1.3 Mathematical model

The correct mathematical model for radar emission and scattering is given by
Maxwell’s equations of electromagnetism. Therefore Maxwell’s equations are
used to understand certain effects that are common in SAR andto enhance the
reconstruction [10]. But due to the complexity of deriving areconstruction
formula based directly on these vector equations, usually only a scalar wave
model is used in mathematical models [8], [9]. In today’s real life applications
not even algorithms based on the wave equation are commonly used, but a simple
backprojection algorithm is applied that is now explained in more detail.

For the simplest case assume a point source that is flying along a straight line
above a flat plain and emitting infinitely short pulses in constant time intervals.
For a single pulse this results in an expanding sphere centered at the emitting
position. When the expanding sphere is large enough, it hitsthe ground and is
reflected. Since the speed of light in air is much larger than the speed of the
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Figure 1.2: The geometry of SAR. Source: [11]

airplane, the airplane is considered static during each send-receive cycle (start-
stop approximation). As the scattered wave is therefore received at exactly the
same position at which it was emitted, the received signal comprises an integral
of the ground reflectivity over the circle that is obtained intersecting the plane
and the expanding sphere at a certain point in time as depicted in figure 1.2. The
equation that describes this measurement is

g(x, r) = Rf(x, r) =
1

|S1|

∫

S1

f(x+ rξ, rη) dS1(ξ, η)

whereg is the measured data andf is the function to be reconstructed (this no-
tation will also be adopted in the following chapters).S1 denotes the unit sphere
in R2, dS1 stands for the canonical surface measure onS1, r denotes the radius
of the circle of the intersection of the plane and the expanding sphere, andx is
the position of the airplane on the track projected onto the plane. This equation is
called the spherical Radon transform. It is obvious that thecollected data contains
only the even part of the reflectivity function with respect to the flight track as the
whole setup is left-right symmetric. The inverse problem now consists of recover-
ing f , either analytically by finding a reconstruction formula ornumerically. The
easiest way to do so is a simple backprojection which numerically distributes each
point of collected data equally over all points of the reconstructed image that lie
on the circle where the data comes from.
The first thorough mathematical treatment based on this model was developed by
Andersson [12]. Chapter 2 is based solely on these ideas and analyzes them more
thoroughly. This model is also the foundation of chapters 3 and 4, but chapter 3
should also yield insight into a more general problem associated with SAR and the
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ideas of chapter 4 may be transferred onto other approaches to SAR. In chapter 5
the algorithms based on this simple model are only used for numerical examples,
whereas the underlying theory developed in this chapter is much more general.
Therefore the ideas of this chapter should be applicable to all SAR systems.
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Chapter 2

An improved inversion formula for
the spherical Radon transform

The determination of a function from spherical averages is aproblem often en-
countered in physical applications such as SAR and SONAR (SOund Navigation
And Ranging is a technique that uses sound propagation underwater to navigate
or to detect other watercraft). The work related to this topic, which has lead
to a great amount of insight and refinement today, began with the proposal of
a reconstruction formula by Fawcett [13]. The mathematicalanalysis of the
problem was later improved by Andersson [12], and two refinedreconstruction
formulas were derived. This sparked a host of activity [14],[7], [15], [16], [17]
so that much of today’s research is based on Anderssons’s ideas.

In [12] two reconstruction formulas were derived from the Fourier inversion for-
mula, but it was not checked whether they are properly defined. In the following it
is shown that the first contains an integral that diverges under physically sensible
conditions. An alternative is presented. Additionally it is shown that the other
reconstruction formula might be difficult to compute numerically.

2.1 Introduction

At first, for the benefit of the reader, some results from [12] will be recalled. Note
that besides the aforementioned problems, a few minor errors occurred, which do
not essentially obscure the results in [12]. For a detailed analysis of these errors
see [18]. Additionally it will be shown that an integral in the first reconstruction
formula in [12] does not converge.

2.1.1 DEFINITION

Let n ∈ N. Then
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1. N0 := N ∪ {0}

2. S (Rn) := {ϕ ∈ C∞(Rn) : ‖xβ∂αϕ‖∞ < ∞∀ β, α ∈ Nn
0} is the Schwartz

Space.

3. A sequence (ϕl)l∈N ⊆ S (Rn) is called zero sequence if
‖xα∂βϕl‖∞ −→

l→∞
0∀β, α ∈ Nn

0 .

4. A linear functionalf : S (Rn) → C, ϕ 7→< f, ϕ > is continuous if
< f, ϕl > −→

l→∞
0 for all zero sequences(ϕl)l∈N ⊆ S (Rn).

5. Se(Rn+1) := {ϕ ∈ S (Rn+1) : ϕ(x,−y) = ϕ(x, y), ∀x ∈ Rn, y ∈ R}.

6. Sr(Rn ×Rn+1) := {ϕ ∈ S (R2n+1) : ∀ orthonormal transformations

U : Rn+1 → Rn+1 ∀x ∈ Rn, z ∈ Rn+1 : ϕ(x, z) = ϕ(x, Uz)}.

7. S ′
e(Rn+1) and S ′

r(Rn × Rn+1) are the dual spaces ofSe(Rn+1) and
Sr(Rn ×Rn+1), respectively. The weak-⋆ topology is used.

8. (S ′
r)cone(Rn×Rn+1) := {g ∈ S ′

r(Rn×Rn+1) : suppĝ ⊆ {(ξ, η) : ‖η‖ ≥
‖ξ‖}}.

9. Sn denotes the unit sphere inRn+1, andSn denotes the canonical measure
on the surface ofSn.

10. Letf ∈ S (Rn). Thenf̂ denotes the Fourier transform inRn:

f̂(ξ) =
1

(2π)
n
2

∫Rn

e−i<x,ξ>f(x) dx.

11. Let f ∈ S (Rn) and g ∈ S ′(Rn). Then the Fourier transform ofg is
defined by

< ĝ, f >=< g, f̂ > .

12. Letf ∈ Se(Rn+1). Then the operatorR is defined by

Rf(x, r) :=
1

|Sn|

∫

Sn

f(x+ rξ, rη) dSn(ξ, η).

8



In this definition the operatorR describes, in the case of SAR and SONAR, the
measurement of the reflectivity functionf that represents the ground reflectivity.
The measurement is modeled as aδ-impulse wave that propagates as concentric
spheres. The ground is approximated as a plane. The single scatter approximation
for the wave hitting the ground results in integrals over circles.
For simplicity, in the following sometimes onlyS , Se, etc. is written instead of
S (Rn+1), Se(Rn+1), etc.

2.1.2 REMARK

1. Let f ∈ Se(Rn+1). Then forg = Rf ∈ S ′
r(Rn × Rn+1), x ∈ Rn, and

r ≥ 0 in the followingg(x, r) is sometimes written with abuse of notation.
This identification ofg(x, y)with g(x, |y|) for y ∈ Rn+1 is justified because
g depends only radially on the lastn + 1 variables.

2. SinceSr(Rn × Rn+1) andSe(Rn+1) are subsets ofS (Rn × Rn+1) and
S (Rn+1), the definition of the Fourier transform can be extended toSr,
S ′

r , Se, andS ′
e .

3. It is easily seen that̂f ∈ Se andĝ ∈ Sr if f ∈ Se andg ∈ Sr, respectively.

The essential result in [12] is the (Fourier-) inversion formula:

2.1.3 THEOREM

If Se(Rn+1) is given the topology ofS ′(Rn+1), the mapping

R : Se(Rn+1) → S
′
r(Rn ×Rn+1)

is continuous and can, by continuity, be extended to a mapping

R : S
′
e(Rn+1) → S

′
r(Rn ×Rn+1).

The range of this extended mappingR is the closed subspace

(S ′
r)cone(Rn ×Rn+1) ⊆ S

′
r(Rn ×Rn+1).

R is one-to-one and the inverse mapping

R−1 : (S ′
r)cone(Rn ×Rn+1) → S

′
e(Rn+1)

is continuous. Moreover, ifg = Rf andf̂(ξ, η) or ĝ(ξ, η) are integrable functions
for ξ, η in some open set, then in that set

ĝ(ξ, η) =





(2π)n
2

|Sn|
f̂
(
ξ,
√
‖η‖2 − ‖ξ‖2

)

‖η‖n−1
√
‖η‖2 − ‖ξ‖2

for ‖η‖ > ‖ξ‖

0 for 0 < ‖η‖ ≤ ‖ξ‖

9



or

f̂(ξ, η) =
1

(2π)n
|Sn|
2

|η|
(
‖ξ‖2 + η2

)n−1
2 ĝ

(
ξ,
√
‖ξ‖2 + η2

)
.

Proof:
[12, Theorem 2.1]

�

This means that the Fourier transform̂g of the datag can under certain conditions
be used to extract the Fourier-transform̂f of the reflectivity functionf .

2.1.4 DEFINITION

1. Letg ∈ Sr(Rn ×Rn+1). Then

R∗g(x, y) =

∫Rn

g
(
z,
√

‖z − x‖2 + y2
)
dz.

2. Letf ∈ L2(R). Then the Hilbert transform off is defined by the principal
value integral

1

π

∫R f(y)

x− y
dy.

In [12] two reconstruction formulas were derived from theorem 2.1.3, the first
of which was already essentially given in [13]. They are given in the following
corollary.

2.1.5 COROLLARY

With cn = 1
(2π)n

|Sn|
2

two reformulations of the inversion formula are possible:

1. Forg ∈ Sr

f = cnHy
∂

∂y
△n−1

2 R∗g

with the Hilbert transform iny, Hy, and the Laplace-Operator△ = △x +
∂2

∂y2
. This formula is essentially also given by Fawcett [13].

2. Forg ∈ (Sr)cone := {g ∈ Sr : suppĝ ⊆ {(ξ, η) : ‖η‖ ≥ ‖ξ‖}}

f = cnR
∗Kg

with the operatorK defined byK̂g(ξ, η) =
√

‖η‖2 − ‖ξ‖2 ‖η‖n−1ĝ(ξ, η).

10



Proof:
[12, Section 3]

�

The corollary states that under certain restrictions it is possible to reconstruct the
reflectivity functionf directly from the datag without taking the detour through
the Fourier space.

2.1.6 REMARK

Note, that the essential restriction of this formulation ofthe corollary in compar-
ison to [12] is that the datag has to be inSr or (Sr)cone respectively. This is
necessary because otherwise the application ofR∗ to g in the first case is unde-
fined or the application ofK to g in the second case.
Unfortunatelyg = Rf is usually not inSr. Therefore the two reformulations of
the inversion formula are only valid in the distributional sense with an appropri-
ately definedR∗.
For example a physically reasonablef ∈ Se, f : R2 → [0,∞) with f(x0, y0) > 0
for somex0, y0 ∈ R yieldsf(x, y) > c > 0 for all (x, y) ∈ Kǫ(x0, y0) with ap-
propriatec, ǫ > 0.
Moreover

2πg
(
z,
√

(z − x)2 + y2
)
=

1√
(z − x)2 + y2

∫

‖r‖=
√

(z−x)2+y2

f(z + r1, r2) dσ(r)

with r = (r1, r2) andσ the canonical measure on the sphere with radiusr in R2.
For

√
(z − x0)2 + y20 > ǫ we obtain with a simple geometrical consideration:

2πg

(
z,
√

(z − x0)2 + y20

)
≥ ǫc

2
√
(z − x0)2 + y20

.

Thus

2πR∗g(x0, y0) =

∫R g

(
z,
√

(z − x0)2 + y20

)
dz

≥ ǫc

2

∫

√
(z−x0)2+y20 >ǫ

1√
(z − x0)2 + y20

dz = ∞.

Since this integral diverges, the reconstruction of a non-negative functionf with
f(x0, y0) > 0 for some(x0, y0) ∈ R2 is impossible using the first reconstruction
formula.

11



This result is in accordance with a result from Nessibi, Rachdi, and Trimeche [19].
They gave reconstruction formulas for functionsg = Rf with

∞∫

0

P (y)f(x, y) dy = 0

for all x ∈ Rn and for all one-variable polynomialsP .

2.2 Properties of the functiong = Rf

Before showing an important property of the data functiong = Rf , which will
be necessary for the derivation of the new reconstruction formula representing an
alternative to Andersson’s, some definitions will be needed.

2.2.1 DEFINITION

Let n ∈ N. Then

1. D(Rn+1) := C∞
0 (Rn+1).

2. De(Rn+1) := {ϕ ∈ D(Rn+1) : ϕ(x,−y) = ϕ(x, y), ∀x ∈ Rn, y ∈ R}.

2.2.2 LEMMA

If f ∈ Se(Rn+1), theng = Rf ∈ C∞.

Proof:
The interchange of differentiation and integration is justified becausef ∈
Se(Rn+1).

�

Now an important property ofg can be shown.

2.2.3 THEOREM

If f ∈ Se(Rn+1), thenĝ = R̂f ∈ L1(Rn ×Rn+1).

Proof:
With f ∈ S , alsof̂ ∈ S ⊆ L1. Theorem 2.1.3 implies that

ĝ(ξ, η) =





(2π)n
2

|Sn|
f̂
(
ξ,
√
‖η‖2 − ‖ξ‖2

)

‖η‖n−1
√

‖η‖2 − ‖ξ‖2
for ‖η‖ > ‖ξ‖

0 otherwise.

Therefore

∫Rn×Rn+1

|ĝ(ξ, η)| dξ dη = (2π)n
2

|Sn|

∫

‖η‖≥‖ξ‖

∣∣∣∣∣∣

f̂
(
ξ,
√
‖η‖2 − ‖ξ‖2

)

‖η‖n−1
√
‖η‖2 − ‖ξ‖2

∣∣∣∣∣∣
dξ dη.

12



The substitution‖η‖ = ρ′ results in

∫Rn×Rn+1

|ĝ(ξ, η)| dξ dη = 2(2π)n
∫Rn

∫

ρ′≥‖ξ‖

∣∣∣∣∣∣

ρ′f̂
(
ξ,
√
ρ′2 − ‖ξ‖2

)

√
ρ′2 − ‖ξ‖2

∣∣∣∣∣∣
dξ dρ′.

The substitutionρ′ = ρ+ ‖ξ‖ leads to

∫Rn×Rn+1

|ĝ(ξ, η)| dξ dη = 2(2π)n
∫Rn

∫

ρ≥0

∣∣∣∣∣∣

(ρ+ ‖ξ‖)f̂
(
ξ,
√
ρ2 + 2ρ‖ξ‖

)

√
ρ2 + 2ρ‖ξ‖

∣∣∣∣∣∣
dξ dρ.

f is in S , therefore
∫Rn×Rn+1

|ĝ(ξ, η)| dξ dη

≤ 2(2π)n
∫Rn

∫

ρ≥0

C(ρ+ ‖ξ‖)
√
ρ2 + 2ρ‖ξ‖

(
1 +

√
‖ξ‖2 + ρ2 + 2ρ‖ξ‖

)n+3 dξ dρ

= 2(2π)n
∫Rn

∫

ρ≥0

C(ρ+ ‖ξ‖)√
ρ2 + 2ρ‖ξ‖(1 + ‖ξ‖+ ρ)n+3

dξ dρ

≤ 2(2π)n
∫Rn

∫

ρ≥0

C√
ρ2 + 2ρ‖ξ‖(1 + ‖ξ‖+ ρ)n+2

dξ dρ

and the integral
∫Rn

∫

ρ≥1

C√
ρ2 + 2ρ‖ξ‖(1 + ‖ξ‖+ ρ)n+2

dξ dρ

converges. So only the integral
∫Rn

∫

0≤ρ≤1

C√
ρ2 + 2ρ‖ξ‖(1 + ‖ξ‖+ ρ)n+2

dξ dρ

remains to be examined.
∫Rn

∫

0≤ρ≤1

C√
ρ2 + 2ρ‖ξ‖(1 + ‖ξ‖+ ρ)n+2

dξ dρ

≤
∫Rn

∫

0≤ρ≤1

C√
ρ‖ξ‖(1 + ‖ξ‖)n+2

dξ dρ

13



=

∫Rn

2C√
‖ξ‖(1 + ‖ξ‖)n+2

dξ < ∞.

�

2.2.4 REMARK

An analogous proof showsηĝ ∈ L1.

2.3 Modification of Andersson’s first inversion for-
mula

To derive an inversion formula that overcomes the problem ofthe diverging inte-
gral, a modified operatorR∗ is defined. This enables a convenient formulation of
a new inversion formula.

2.3.1 Definition and properties of a modifiedR∗

Now a modified version of the operatorR∗ is introduced, and its properties are
discussed.

2.3.1 DEFINITION

Forf ∈ De andg = Rf ∈ C∞(Rn ×Rn+1) we define

(R∗
∂g)(x, y) :=

∫Rn

∂

∂y
g
(
z,
√

‖x− z‖2 + y2
)
dz.

This slight modification by an additional derivation turns out to ensure the conver-
gence of the integral applied by the operatorR∗

∂ under the minor and physically
feasible constraint thatf is in De. Thereby the formulation of a mathematically
exact reconstruction formula is possible.

2.3.2 PROPOSITION

R∗
∂g is well defined forf ∈ De andg = Rf .

Proof:
Let x ∈ Rn, y ∈ R. Then

|(R∗
∂g)(x, y)| =

∣∣∣∣∣∣

∫Rn

∂

∂y
g
(
z,
√

‖x− z‖2 + y2
)
dz

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∫Rn

∂

∂y

1

|Sn|

∫

Sn

f
(
z + ξ

√
‖x− z‖2 + y2, η

√
‖x− z‖2 + y2

)
dSn(ξ, η) dz

∣∣∣∣∣∣
.

14



f ∈ De and therefore it is possible to interchange differentiation and integration.

|(R∗
∂g)(x, y)|

=

∣∣∣∣∣∣

∫Rn

1

|Sn|

∫

Sn

∂

∂y
f
(
z + ξ

√
‖x− z‖2 + y2, η

√
‖x− z‖2 + y2

)
dSn(ξ, η) dz

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∫Rn

1

|Sn|

∫

Sn

y√
‖x− z‖2 + y2

×
(
ξ

η

)
· (∇f)

(
z + ξ

√
‖x− z‖2 + y2, η

√
‖x− z‖2 + y2

)
dSn(ξ, η) dz

∣∣∣∣

≤
∫Rn

1

|Sn|

∫

Sn

|y|√
‖x− z‖2 + y2

×
∥∥∥(∇f)

(
z + ξ

√
‖x− z‖2 + y2, η

√
‖x− z‖2 + y2

)∥∥∥ dSn(ξ, η) dz.

The substitutionr = (ξ, η)
√
‖x− z‖2 + y2 yields

|(R∗
∂g)(x, y)|

≤
∫Rn

1

|Sn|

∫

‖r‖=
√

‖x−z‖2+y2

|y|
(√

‖x− z‖2 + y2
)n+1‖(∇f)((z, 0) + r)‖ dσ(r) dz.

Sincef ∈ D ,
|(R∗

∂g)(x, y)|

≤
∫Rn

|y|
(√

‖x− z‖2 + y2
)n+1 max(‖∇f‖) diam(suppf) dz < ∞.

�

2.3.3 COROLLARY

Forf ∈ De andg = Rf , R∗
∂g ∈ C∞ ∩ L∞.

Proof:
This is guaranteed by the estimate in proposition 2.3.2.

�

2.3.4 DEFINITION

Let f ∈ S ′(Rn) andϕ ∈ S (Rn). Then

< f, ϕ >S (Rn):= f(ϕ)

is the functionalf applied to the test functionϕ. Here the subscriptS (Rn) is a
reminder of the space of the test functionϕ.
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Now in analogy to [12] an expression for̂R∗
∂g is derived.

2.3.5 THEOREM

Letf ∈ De andg = Rf . ThenR̂∗
∂g(ξ, η) = iηĝ

(
ξ,
√
‖ξ‖2 + η2

)
.

Proof:
Letϕ ∈ S , f ∈ De, andg = Rf . Then

< R̂∗
∂g, ϕ >S (Rn×R)=< R∗

∂g, ϕ̂ >S (Rn×R)=

∫Rn×R (R∗
∂g)(x

′, y)ϕ̂(x′, y) dx′ dy

=

∫Rn×R ∫Rn

∂

∂y
g
(
z,
√

‖x′ − z‖2 + y2
)
dz ϕ̂(x′, y) dx′ dy.

As ϕ̂ ∈ S and with corollary 2.3.3, Fubini’s theorem implies

< R̂∗
∂g, ϕ >S (Rn×R)=

∫Rn

∫Rn×R ∂

∂y
g
(
z,
√

‖x′ − z‖2 + y2
)
ϕ̂(x′, y) dx′ dy dz.

Continuing in the distributional sense

< R̂∗
∂g, ϕ >S (Rn×R)= −

∫Rn

∫Rn×R g
(
z,
√

‖x′ − z‖2 + y2
) ∂

∂y
ϕ̂(x′, y) dx′ dy dz

= −
∫Rn

∫Rn×R g
(
z,
√

‖x′ − z‖2 + y2
)

× ∂

∂y


 1

(2π)
n+1
2

∫Rn×R e−i(<x′,ξ>+yη)ϕ(ξ, η) dξ dη


 dx′ dy dz

= i

∫Rn

∫Rn×R ∫Rn×R 1

(2π)
n+1
2

e−i<z,ξ>e−i(<x′−z,ξ>+yη)

× ηg
(
z,
√

‖x′ − z‖2 + y2
)
ϕ(ξ, η) dξ dη dx′ dy dz.

The substitutionx′ = x+ z yields

< R̂∗
∂g, ϕ >S (Rn×R) = i

∫Rn

∫Rn×R ∫Rn×R 1

(2π)
n+1
2

e−i<z,ξ>e−i(<x,ξ>+yη)

× ηg
(
z,
√

‖x‖2 + y2
)
ϕ(ξ, η) dξ dη dx dy dz
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=

∫Rn×R iηĝ
(
ξ,
√
‖ξ‖2 + η2

)
ϕ(ξ, η) dξ dη

=< iηĝ1, ϕ >S (Rn×R) .

Hereĝ1(ξ, η) := ĝ
(
ξ,
√
‖ξ‖2 + η2

)
and with this definitionĝ1 ∈ S ′(Rn ×R).

�

2.3.2 A modified inversion formula

With the results of the preceding sections a well defined reconstruction formula is
also attainable for physically meaningful reflectivity functions.

2.3.6 THEOREM

Let f ∈ De and g = Rf . Then f = cnHy△
n−1
2 R∗

∂g with the constant

cn := 1
(2π)n

|Sn|
2

and the Hilbert transformHy.

Proof:
Let f ∈ De. It follows from theorem 2.2.3 and theorem 2.1.3 that

f̂(ξ, η) = cn|η|
(
‖ξ‖2 + η2

)n−1
2 ĝ

(
ξ,
√
‖ξ‖2 + η2

)

= cn(−i) sgn(η)
(
‖ξ‖2 + η2

)n−1
2 iηĝ

(
ξ,
√
‖ξ‖2 + η2

)
.

Theorem 2.3.5 yields

f̂(ξ, η) = cn(−i) sgn(η)
(
‖ξ‖2 + η2

)n−1
2 R̂∗

∂g(ξ, η)

= cn(−i) sgn(η)
(
△n−1

2 R∗
∂g
)

(̂ξ, η)

= cn

(
Hy△

n−1
2 R∗

∂g
)

(̂ξ, η).

This completes the proof, becausef is in Se.
�

2.4 Problems with Andersson’s second inversion
formula

In the following it is shown that the second reformulation ofthe inversion formula
in [12] is only valid in the distributional sense.
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2.4.1 PROPOSITION

Let f ∈ Se andg = Rf . ThenK̂g ∈ Lp(Rn ×Rn+1) for all p > 0.

Proof:
Theorem 2.1.3 implies that

ĝ(ξ, η) =





(2π)n
2

|Sn|
f̂
(
ξ,
√
‖η‖2 − ‖ξ‖2

)

‖η‖n−1
√

‖η‖2 − ‖ξ‖2
for ‖η‖ > ‖ξ‖

0 otherwise.

Hence

∣∣∣K̂g(ξ, η)
∣∣∣ =





(2π)n
2

|Sn| f̂
(
ξ,
√
‖η‖2 − ‖ξ‖2

)
for ‖η‖ > ‖ξ‖

0 otherwise

≤





(2π)n
C

|Sn|
(
1 +

√
‖ξ‖2 + |‖η‖2 − ‖ξ‖2|

)− 2n+2
p

for ‖η‖ > ‖ξ‖
0 otherwise

≤





(2π)n
C

|Sn|(1 + ‖η‖)− 2n+2
p for ‖η‖ > ‖ξ‖

0 otherwise

≤ (2π)n
C

|Sn|(1 + max(‖ξ‖, ‖η‖))− 2n+2
p

with an appropriateC > 0.
�

This proposition is sufficient for the validity of the secondreconstruction formula
in the distributional sense.However it is noteworthy that in generalg is only inC∞

and not for example inL2. Thereforeĝ has to be computed in the distributional
sense and no further improvement for this inversion formulais achievable.

2.4.2 COROLLARY

Let f ∈ De with f̂(0, 0) 6= 0 andg = Rf . Theng, ĝ 6∈ L2(Rn ×Rn+1).

Proof:
Theorem 2.1.3 yields

ĝ(ξ, η) =





(2π)n
2

|Sn|
f̂
(
ξ,
√
‖η‖2 − ‖ξ‖2

)

‖η‖n−1
√

‖η‖2 − ‖ξ‖2
for ‖η‖ > ‖ξ‖

0 otherwise.
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Therefore

∫Rn×Rn+1

|ĝ(ξ, η)|2 dξ dη = (2π)2n
4

|Sn|2
∫

‖η‖≥‖ξ‖

∣∣∣f̂
(
ξ,
√
‖η‖2 − ‖ξ‖2

)∣∣∣
2

‖η‖2n−2 (‖η‖2 − ‖ξ‖2) dξ dη.

The substitution‖η‖ = ρ′ results in

∫Rn×Rn+1

|ĝ(ξ, η)|2 dξ dη

= (2π)2n
4

|Sn|

∫Rn

∫

ρ′≥‖ξ‖

ρ′2−n
∣∣∣f̂
(
ξ,
√
ρ′2 − ‖ξ‖2

)∣∣∣
2

ρ′2 − ‖ξ‖2 dξ dρ′.

The substitutionρ′ = ρ+ ‖ξ‖ leads to

∫Rn×Rn+1

|ĝ(ξ, η)|2 dξ dη

= (2π)2n
4

|Sn|

∫Rn

∫

ρ≥0

(ρ+ ‖ξ‖)2−n
∣∣∣f̂
(
ξ,
√
ρ2 + 2ρ‖ξ‖

)∣∣∣
2

ρ2 + 2ρ‖ξ‖ dξ dρ.

We consider

∫

‖ξ‖≤ 1
2

∫

0≤ρ≤ 1
2

(ρ+ ‖ξ‖)2−n
∣∣∣f̂
(
ξ,
√
ρ2 + 2ρ‖ξ‖

)∣∣∣
2

ρ2 + 2ρ‖ξ‖ dξ dρ

and assume without loss of generality
∣∣∣f̂
(
ξ,
√
ρ2 + 2ρ‖ξ‖

)∣∣∣ ≥ 1 for ‖ξ‖ ≤ 1
2
,

0 ≤ ρ ≤ 1
2
:

∫

‖ξ‖≤ 1
2

∫

0≤ρ≤ 1
2

(ρ+ ‖ξ‖)2−n
∣∣∣f̂
(
ξ,
√
ρ2 + 2ρ‖ξ‖

)∣∣∣
2

ρ2 + 2ρ‖ξ‖ dξ dρ

≥
∫

‖ξ‖≤ 1
2

∫

0≤ρ≤ 1
2

(ρ+ ‖ξ‖)2−n

ρ2 + 2ρ‖ξ‖ dξ dρ.
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With the substitutionr = ‖ξ‖ we obtain

∫

‖ξ‖≤ 1
2

∫

0≤ρ≤ 1
2

(ρ+ ‖ξ‖)2−n
∣∣∣f̂
(
ξ,
√
ρ2 + 2ρ‖ξ‖

)∣∣∣
2

ρ2 + 2ρ‖ξ‖ dξ dρ

≥ |Sn−1|
∫

0≤r≤ 1
2

∫

0≤ρ≤ 1
2

(ρ+ r)2−nrn−1

ρ2 + 2ρr
dr dρ.

Forn = 1 this is

∫

‖ξ‖≤ 1
2

∫

0≤ρ≤ 1
2

(ρ+ ‖ξ‖)
∣∣∣f̂
(
ξ,
√
ρ2 + 2ρ‖ξ‖

)∣∣∣
2

ρ2 + 2ρ‖ξ‖ dξ dρ

≥
∫

0≤r≤ 1
2

∫

0≤ρ≤ 1
2

ρ+ r

ρ2 + 2ρr
dr dρ ≥

∫

0≤r≤ 1
2

∫

0≤ρ≤ 1
2

1

2ρ
dr dρ = ∞.

Forn ≥ 2 this results in

∫

‖ξ‖≤ 1
2

∫

0≤ρ≤ 1
2

(ρ+ ‖ξ‖)2−n
∣∣∣f̂
(
ξ,
√
ρ2 + 2ρ‖ξ‖

)∣∣∣
2

ρ2 + 2ρ‖ξ‖ dξ dρ

≥
∫

0≤r≤ 1
2

∫

0≤ρ≤ 1
2

rn−1

ρ2 + 2ρr
dr dρ = ∞.

�

2.4.3 REMARK

Unfortunately usuallŷf(0, 0) 6= 0 for a reflectivity functionf 6≡ 0 with physically
realistic properties. Moreover̂g is not continuous, and thereforeg /∈ L1, so it
might be difficult to computêg numerically with sufficient accuracy. Therefore
the other inversion formula seems to be a better approach numerically.

2.5 Numerical simulations

As can be seen in theorem 2.3.6, the exact reconstruction of the reflectivity func-
tion f requires data from the whole half plane. This is impossible in practice,
therefore several ways to handle this problem were developed, ranging from a
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simple cutoff to applying an exponential decay towards the edges of the data. In
the following a new approach is proposed to lessen the artifacts caused by this
limitation of the data. Then the results of computer simulations using this new ap-
proach are compared to the results using a simple cutoff. Theproblem of limited
data in the spherical Radon transform is thoroughly examined in chapter 3.

2.5.1 New approach

The proof of proposition 2.3.2 yields

(R∗
∂g)(x, y) =

∫Rn

1

|Sn|

∫

Sn

y√
‖x− z‖2 + y2

×
(
ξ

η

)
· (∇f)

(
z + ξ

√
‖x− z‖2 + y2, η

√
‖x− z‖2 + y2

)
dSn(ξ, η) dz

=

∫Rn

1

|Sn|
y

(√
‖x− z‖2 + y2

)n+1

×
∫

‖r‖=
√

‖x−z‖2+y2

r

‖r‖ · (∇f)((z, 0) + r) dσ(r) dz.

The new approach presented here is based upon the idea that the integral

∫

‖r‖=
√

‖x−z‖2+y2

r

‖r‖ · (∇f)((z, 0) + r) dσ(r)

does not vary much for large values ofz because for largez the integral describes
a circle with a large radius that runs through the support off . Therefore the
curvature only changes slightly and sincef ∈ D the same should hold for the
integral. The missing data is replaced by an approximation that uses the first and
last known data with regard to the variable of integrationz as an approximation
for the interval of integration where the data is unknown. Since it is easily seen
from the formula above that∂

∂y
g(x, y) = 0 for y = 0, it is sufficient that the

following approximation is well defined fory 6= 0, wherezmin andzmax denote
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the smallest and the largest values ofz with data available:

(R∗
∂g)(x, y) ≈

zmax∫

zmin

∂

∂y
g
(
z,
√

‖x− z‖2 + y2
)
dz

+

zmin∫

−∞

1

|Sn|
y

(√
‖x− z‖2 + y2

)n+1

×

(√
‖x− zmin‖2 + y2

)n+1

y

y
(√

‖x− zmin‖2 + y2
)n+1

×
∫

‖r‖=
√

‖x−zmin‖2+y2

r

‖r‖ · (∇f)((zmin, 0) + r) dσ(r) dz

+

∞∫

zmax

1

|Sn|
y

(√
‖x− z‖2 + y2

)n+1

×

(√
‖x− zmax‖2 + y2

)n+1

y

y
(√

‖x− zmax‖2 + y2
)n+1

×
∫

‖r‖=
√

‖x−zmax‖2+y2

r

‖r‖ · (∇f)((zmax, 0) + r) dσ(r) dz

=

zmax∫

zmin

∂

∂y
g
(
z,
√

‖x− z‖2 + y2
)
dz

+

zmin∫

−∞

y
(√

‖x− z‖2 + y2
)n+1

(√
‖x− zmin‖2 + y2

)n+1

y

× ∂

∂y
g
(
zmin,

√
‖x− zmin‖2 + y2

)
dz

+

∞∫

zmax

y
(√

‖x− z‖2 + y2
)n+1

(√
‖x− zmax‖2 + y2

)n+1

y

× ∂

∂y
g
(
zmax,

√
‖x− zmax‖2 + y2

)
dz
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=

zmax∫

zmin

∂

∂y
g
(
z,
√

‖x− z‖2 + y2
)
dz

+

(
π

2
− arctan

(
x− zmin

y

)) (√‖x− zmin‖2 + y2
)n+1

y

× ∂

∂y
g
(
zmin,

√
‖x− zmin‖2 + y2

)

+

(
π

2
+ arctan

(
x− zmax

y

)) (√‖x− zmax‖2 + y2
)n+1

y

× ∂

∂y
g
(
zmax,

√
‖x− zmax‖2 + y2

)

2.5.2 Comparison

Now the images obtained via the approximate reconstructionformula derived
above are compared to the results of a simple reconstructionformula that sets
unmeasured data to0. This comparison will highlight the advantages of this new
approach.

0 128
y

256
128

x 0

−128

y

y
f(0, y)

Figure 2.1: Phantom

The underlying phantom for the following comparison is verysimple. It is a circle
with a radius of20 as depicted on the left in figure 2.1. Its center is with(0, 25)
close to the flighttrack that runs along the left edge(y = 0). The circle has
an amplitude of10, the remaining part has a reflectivity of0, as can be seen in
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the cross section on the right that is indicated in the left image by the horizontal
line. The figures shown in the following are all composed in this same way. The
simulated measurements are noise free. Several reconstruction pairs are shown.
The first uses data that stretches exactly as far as the reconstructed area, i. e.
0 ≤ r < 256 and−128 ≤ x < 128. The following pairs are reconstructed each
with a larger amount of data in both directions with respect to the preceding one.
The reconstructions are designated accordingly. The first reconstruction in each
pair is obtained by continuing the data with0 in the region where data is missing.
The second is reconstructed using the approximation derived above.
Figures 2.2 and 2.3 show reconstructions that use an amount of data that is ex-
actly as large as the data contained in the images, i. e.0 ≤ r < 256 and
−128 ≤ x < 128. Data that is unavailable is set to0 for reconstruction pur-
poses in figure 2.2. This causes two broad circular artifacts- one curved upward
and one downward - that are clearly visible. The formation ofthe artifacts can
be understood as follows. The information in the data that isactually measured
causes the algorithm to reconstruct the large positive circular phantom. The only
possibility however to conform to the0 of the continuation of the data is to form
these circular negative artifacts. This is the only way to achieve that the circular
integral which runs through the large positive phantom becomes0. Therefore the
radius of these artifacts matches exactly the smallest radius that is missing in the
data. A side effect is that both algorithms overshoot the amplitude of the circle.
It is notable that in figure 2.2 the error is large close to the object and decreases
as the artifact closes to the edges of the image. Another problem is the noticeable
gradient in the object’s amplitude.
The missing data was dealt with as delineated in subsection 2.5.1 to obtain figure
2.3. Again this causes artifacts that are similar to the artifacts in figure 2.2. The
reconstruction is very good close to the object, as can be seen in the cross section
before the dip, but the artifacts get worse as they approach the edges of the im-
age. This comes from the fact that for large values of|x| the approximation gets
less reliable. However, the gradient in the object’s amplitude in figure 2.2 is not
reflected in figure 2.3 where the amplitude is constant, as it should be.
In figures 2.4 and 2.5 double the amount of data in each direction is used relative
to the preceding two images, i. e.0 ≤ r < 512 and−256 ≤ x < 256. Again the
first figure shows the reconstruction using a continuation by0 for missing data,
whereas the second figure is computed with the help of the approximation. The
artifacts seen in figures 2.4 and 2.5 are similar to the artifacts seen in the previous
image pair, albeit less severe. The gradient of the circle infigure 2.4 is less steep
than in figure 2.2 and the dip below0 is shallower but broader. A similar effect is
noticeable in comparison of figures 2.3 and 2.5. The area close to the object with
its very good accuracy between the object and the dip, where the reflectivity stays
constant around0, is larger and the dip is more shallow.
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Figure 2.2: Simple reconstruction; single data
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Figure 2.3: Reconstruction using approximate continuation; single data
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Figure 2.4: Simple reconstruction; quadruple data
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Figure 2.5: Reconstruction using approximate continuation; quadruple data
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Figure 2.6: Simple reconstruction;42 fold data
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Figure 2.7: Reconstruction using approximate continuation; 42 fold data

Figures 2.6 and 2.7 are computed with quadruple the amount ofdata relative to the
former pair, i. e.0 ≤ r < 1024 and−512 ≤ x < 512. The trend of the preceding
comparison continues in these figures. The gradient in the circle’s amplitude is
almost negligible in figure 2.6 and the negative region behind the object is again
shallower and broader. Also in figure 2.7 the dip is not as deepas in figure 2.5 and
the area behind the circle that has an amplitude close to0 is broader.

The data used to reconstruct figures 2.8 and 2.9 encompasses 16 fold the length
in each direction with respect to the reconstructed image, i. e. 0 ≤ r < 4096
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Figure 2.8: Simple reconstruction;162 fold data
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Figure 2.9: Reconstruction using approximate continuation; 162 fold data
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and−2048 ≤ x < 2048. The gradient in the amplitude of the object in figure
2.8 is nonexistent. An interesting difference between figure 2.8 and the preceding
images of that kind can be seen in the negative region behind the circle. The
area has broadened, but at the right edge of the image there isa dip in contrast to
the preceding constructions of this kind. This reminds of the reconstructions of
the other type. Figure 2.9 shows the same pattern as the previous reconstructions
using the approximation formula. It is worth mentioning that the area where the
amplitude is close to0 almost stretches over the whole image.
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Figure 2.10: Simple reconstruction;322 fold data
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Figure 2.11: Reconstruction using approximate continuation;322 fold data
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The reconstructions in figures 2.10 and 2.11 use double the amount of data
in each direction relative to figures 2.8 and 2.9, i. e.0 ≤ r < 8192 and
−4096 ≤ x < 4096. For this large amount of data both reconstructions look very
much alike. This is due to the fact that the region where data is missing is far
away and therefore the data from that region only has a very small influence on
the reconstruction.

The comparison of the preceding images suggests that using the previously de-
rived approximative continuation of the data is superior toa continuation by0
since the reconstruction quality close to the flight track ismuch better. As is well
known from experience [18], the reconstruction quality away from the flight track
is plagued by artifacts and therefore unreliable anyway. Therefore the method of
approximate continuation seems to be preferable. In addition the adverse effects
away from the flight track could probably be alleviated by using an exponential
decay as a kind of mollifier in the approximation algorithm.
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Chapter 3

Ghosts due to limited data

Depending on the reconstruction algorithm there are various artifacts that appear
in images obtained by the inversion of the spherical Radon transform, as seen in
chapter 2. Since theorem 2.1.3 states thatR is one-to-one, there should not be
any artifacts in these reconstructions. However theorem 2.1.3 requires the data
to be known for allx and allr > 0. As this is not the case, uniqueness is lost.
Therefore it seems obvious that one of the main origins of these artifacts is the
impossibility of measuring infinitely far. This phenomenonis further examined
in this chapter. It will be shown that there exist functions with support inside the
measured region that do not have any effect on the measured data. Functions like
these are commonly called ghosts. A complete descriptions of these ghosts will
be given and some examples will be shown.

3.1 The problem of limited data

The reconstruction formulas in theorem 2.1.3, corollary 2.1.5, and theorem 2.3.6
are exact within the respective assumptions. Therefore an exact reconstruction
without artifacts should be possible. But for each point which is to be recon-
structed all the reconstruction formulas require data fromarbitrary long distances
with arbitrary large radii. Of course this is impossible in reality. Even in computer
simulations this can not be achieved.
Problems like this are known from various inverse problems.There are two kinds
of difficulties associated with the implementation of the inversion formula for the
spherical Radon transform. First, the data is only gatheredin a discretized man-
ner and can only be handled in a discretized manner. And secondly, the data can
only be supported on a compact interval in opposition to the analytical model. For
both problems there is an analogy to computerized tomography. It is known for
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computerized tomography that the artifacts arising from the discretization have
high frequencies and do not impair reconstruction quality if properly handled
[20], [21]. Therefore this problem is not considered here, as it could probably
be amended in a similar way and just as in the case of computerized tomography
would probably not be as severe as the problem of limited data. The problems that
are discussed in this chapter emerge solely from the fact that data is only collected
over compact intervals in plane positions and circle radii.Similar problems in
computerized tomography are the limited angle problem thatis known to produce
severe artifacts [22] and the exterior problem, respectively. There are differences
however, as the exterior problem still preserves the uniqueness in computerized
tomography, although it causes some instability [23]. It will be shown in the fol-
lowing that both limitations cause artifacts in the reconstruction of SAR-data.
Only the two dimensional case is considered here, but the results should be easily
transferable to higher dimensions.
For a decent analysis of the effects of limited data it is crucial to find a set of
orthogonal functions that represents the whole data space outside the measurable
region because such a set allows to restrict the analysis of the effects to a well
known set of functions. The problem is to find such a set that can also be analyti-
cally inverted by an inversion formula for the spherical Radon transform. To this
end the following steps are necessary.
First, a set of orthogonal functions that are supported outside of the measurable
region is constructed and some important properties are listed. It is shown that
for an arbitrary, hypothetical measurement that extends over the whole half plane
the information gathered by the projections of the data ontothe set of orthogonal
functions is sufficient to regain the data outside of some compact set that can real-
istically be measured. Then the orthogonal functions, which span the whole space
of data functions that could be measured outside this compact set, are inverted
using the inversion formula in theorem 2.1.3. Finally some numerical examples
are shown.
These examples show that the problem of limited data should not be neglected.
Since the artifacts that can arise are severe and depend on the chosen reconstruc-
tion formula, as seen in the preceding chapter, it should be tried to find means to
minimize these artifacts.

3.2 Orthogonal functions and their transforms

In the following, the maximal radius up to which the data is measured will be
denoted withR and the start- and endpoints of the flight track will be denoted
with −L andL respectively. Therefore the data functiong(x, r) is only known
for 0 ≤ r ≤ R and−L ≤ x ≤ L. Now some functions and their transforms are
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compiled. This information is later used to construct a set of orthogonal functions
supported inR× [0,∞) \ [−L, L]× [0, R].

3.2.1 DEFINITION

J0 denotes the Bessel function of order zero, which is defined as

J0(z) :=
∞∑

k=0

(−1)k
z2k

22kk!Γ(k + 1)

for |argz| < π.

3.2.2 DEFINITION

Forf : [0,∞) → R the Hankel transform off is defined as

∞∫

0

f(r)rJ0(rρ) dr.

3.2.3 LEMMA

Let b, b′ > 0. Then

2

π

∞∫

0

cos(br) cos(b′r) dr = δ(b− b′).

Proof:
This is easily verified using the properties of the Fourier transform [24].

�

3.2.4 THEOREM

If f : [0,∞) → R and
√
rf(r) is piecewise continuous and absolutely integrable,

then

f̄(ρ) =

∞∫

0

f(r)rJ0(rρ) dr

exists and
∞∫

0

f̄(ρ)ρJ0(ρr) dρ = lim
h→0

1

2
(f(r + h) + f(r − h)).

Proof:
[24, 5-3, Theorem 1]

�
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3.2.5 LEMMA

Let a > 0 and

f(x) =





J0
(
a
√
x2 − L2

)
for |x| > L

0 for |x| < L.

Then

∞∫

0

cos(xξ)f(x) dx =





e−L
√

a2−ξ2√
a2−ξ2

for 0 < |ξ| < a

− sin
(

L
√

ξ2−a2
)

√
ξ2−a2

for |ξ| > a.

Proof:
[25, I, §17, p. 78]

�

3.2.6 LEMMA

Let

f(r) =





cos(b
√
r2−R2)√

r2−R2 for r > R

0 for r < R.

Then
∞∫

0

rJ0(rρ)f(r) dr =





cos
(

R
√

ρ2−b2
)

√
ρ2−b2

for ρ > b

0 for ρ < b.

Proof:
[26, I, 1.2, 2.56, p. 12]

�

3.2.7 LEMMA

Let

f(r) =





cos(b
√
R2−r2)√

R2−r2
for r < R

0 for r > R.

Then
∞∫

0

rJ0(rρ)f(r) dr =
sin
(
R
√

ρ2 + b2
)

√
ρ2 + b2

.
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Proof:
[26, I, 1.2, 2.55, p. 12]

�

3.2.8 LEMMA

Let r, r0 > 0. Then the Hankel transform ofr0J0(ro·) is

∞∫

0

ρJ0(rρ)r0J0(r0ρ) dρ = δ(r − r0).

The· is a placeholder for the variable used in the transform.

Proof:
This is easily verified using theorem 3.2.4.

�

Now two sets of distributions will be given,{oa,brange|a ∈ R, b ≥ 0} and

{oa,leven, o
a,l
odd|a ≥ 0, l ∈ N0} and it is shown that they are orthogonal. The first set

consists of distributions that are supported only inr > R. These distributions thus
represent the missing information due to the limitation that the reflected waves can
only be received up to some distanceR. The second set consists of functions that
are supported only inr < R and |x| > L. These functions therefore represent
the missing information due to the fact that the plane travels only a limited dis-
tance from−L to L. Note however that in this set only the information deficit is
contained that is in addition to the first case. Therefore theconstraintr < R is
added.

3.2.9 DEFINITION

Let R,L > 0.

1. Leta ∈ R, b ≥ 0. Define

oa,brange(x, r) :=





δ(x− a)
cos(b

√
r2−R2 )√

r2−R2 for r > R

0 otherwise.

2. Leta ≥ 0, l ∈ N0. Define

oa,leven(x, r)

:=





J0
(
a
√
x2 − L2

) cos(l πR
√
R2−r2 )√

R2−r2
for 0 ≤ r < R and|x| > L

0 otherwise.
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3. Leta ≥ 0, l ∈ N0. Define

oa,lodd(x, r)

:=





xJ0
(
a
√
x2 − L2

) cos(l πR
√
R2−r2 )√

R2−r2
for 0 ≤ r < R and|x| > L

0 otherwise.

3.2.10 DEFINITION

Define Neumann’s numberǫn [27]:
ǫ0 := 1, ǫn := 2, n = 1, 2, 3, ....

3.2.11 PROPOSITION

LetR,L > 0.

1. Leta, a′ ∈ R, b, b′ ≥ 0, a 6= a′, b 6= b′. Then the distributionsoa,brange(x, r)

andoa
′,b′

range(x, r) are orthogonal to each other with respect to the scalar prod-

uct< f, g >orange=
∞∫
R

∫R f(x, r)g(x, r)r
√
r2 − R2 dx dr.

2. Leta, a′ > 0, l, l′ ∈ N0, a 6= a′, l 6= l′. Then the functionsoa,leven(x, r) and
oa

′,l′

even(x, r) are orthogonal to each other with respect to the scalar product

< f, g >oeven=
R∫
0

∞∫
L

f(x, r)g(x, r)r
√
R2 − r2x dx dr.

3. Leta, a′ > 0, l, l′ ∈ N0, a 6= a′, l 6= l′. Then the functionsoa,lodd(x, r) and
oa

′,l′

odd (x, r) are orthogonal to each other with respect to the scalar product

< f, g >oodd=
R∫
0

∞∫
L

f(x, r)g(x, r)r
√
R2 − r2 1

x
dx dr.

Proof:

LetR,L > 0.
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1. Leta, a′ ∈ R, b, b′ ≥ 0, a 6= a′, b 6= b′. Then

<oa,brange, o
a′,b′

range >orange

=

∞∫

R

∫R oa,brange(x, r)o
a′,b′

range(x, r)r
√
r2 − R2 dx dr

=

∞∫

R

∫R δ(a− x)
cos
(
b
√
r2 − R2

)
√
r2 − R2

× δ(x− a′)
cos
(
b′
√
r2 −R2

)
√
r2 −R2

r
√
r2 −R2 dx dr

= (δ0 ∗ δa′)(a)
∞∫

R

∫R cos
(
b
√
r2 − R2

)
cos
(
b′
√
r2 − R2

) r√
r2 −R2

dx dr.

The substitutionr′ =
√
r2 − R2 and lemma 3.2.3 yield

< oa,brange, o
a′,b′

range >orange = (δa′)(a)

∞∫

0

cos(br′) cos(b′r′) dr′

=
π

2
δ(a− a′)δ(b− b′).

2. Leta, a′ > 0, l, l′ ∈ N0, a 6= a′, l 6= l′. Then

< oa,leven, o
a′,l′

even >oeven

=

R∫

0

∞∫

L

oa,leven(x, r)o
a′,l′

even(x, r)r
√
R2 − r2 x dx dr

=

R∫

0

∞∫

L

J0
(
a
√
x2 − L2

) cos
(
l π
R

√
R2 − r2

)
√
R2 − r2

J0
(
a′
√
x2 − L2

)

× cos
(
l′ π
R

√
R2 − r2

)
√
R2 − r2

r
√
R2 − r2 x dx dr

=

R∫

0

∞∫

L

J0
(
a
√
x2 − L2

)
cos
(
l
π

R

√
R2 − r2

)
J0
(
a′
√
x2 − L2

)

× cos
(
l′
π

R

√
R2 − r2

) r√
R2 − r2

x dx dr.
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The substitutionsr′ =
√
R2 − r2 andx′ =

√
x2 − L2 and lemma 3.2.8

yield

< oa,leven, o
a′,l′

even >oeven =

R∫

0

∞∫

0

J0(ax
′) cos(l

π

R
r′)J0(a

′x′) cos(l′
π

R
r′)x′ dx′ dr′

=
1

a
δ(a− a′)

R

ǫl
δll′

with the Neumann’s numberǫl.

3. Leta, a′ > 0, l, l′ ∈ N0, a 6= a′, l 6= l′. Then

< oa,lodd, o
a′,l′

odd >oodd

=

R∫

0

∞∫

L

oa,lodd(x, r)o
a′,l′

odd (x, r)r
√
R2 − r2

1

x
dx dr

=

R∫

0

∞∫

L

xJ0
(
a
√
x2 − L2

) cos
(
l π
R

√
R2 − r2

)
√
R2 − r2

xJ0
(
a′
√
x2 − L2

)

× cos
(
l′ π
R

√
R2 − r2

)
√
R2 − r2

r
√
R2 − r2

1

x
dx dr

=

R∫

0

∞∫

L

J0
(
a
√
x2 − L2

)
cos
(
l
π

R

√
R2 − r2

)
J0
(
a′
√
x2 − L2

)

× cos
(
l′
π

R

√
R2 − r2

) r√
R2 − r2

x dx dr.

The substitutionsr′ =
√
R2 − r2 andx′ =

√
x2 − L2 and lemma 3.2.8

yield

< oa,lodd, o
a′,l′

odd >oodd =

R∫

0

∞∫

0

J0(ax
′) cos(l

π

R
r′)J0(a

′x′) cos(l′
π

R
r′)x′ dx′ dr′

=
1

a
δ(a− a′)

R

ǫl
δll′

with the Neumann’s numberǫl.

�
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3.3 Projection of unmeasurable data onto orthogo-
nal functions

In the following the projections of the data onto the orthogonal function sets are
defined, and it is shown that the data forr > R andx > L can be recovered from
these projections.

3.3.1 LEMMA

Let f ∈ S andg = Rf . Theng(x, r) = g(x,−r).

Proof:
This is easily verified using the definition ofRf(x, r).

�

3.3.2 DEFINITION

Let f ∈ S andg = Rf . Define

1.

Grange(a, b) :=
2

π
< oa,brange(x, r), g(x, r) >orange

2.
Gl

even(a) :=
ǫl
2R

a < oa,leven(x, r), g(x, r) + g(−x, r) >oeven

3.
Gl

odd(a) :=
ǫl
2R

a < oa,lodd(x, r), g(x, r)− g(−x, r) >oodd

3.3.3 DEFINITION

Let a, b ∈ R ∪ {−∞,∞}, a < b, andx ∈ R. Then define the characteristic
function of(a, b)

χ(a,b)(x) :=





1 for x ∈ (a, b)

0 otherwise.

3.3.4 THEOREM

1. Grange is well defined iff ∈ S andg = Rf . Moreover, forr > R

g(x, r) =

∞∫

0

∫R oa,brange(x, r)Grange(a, b) da db.
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2. Gl
even(a) is well defined iff ∈ S andg = Rf . Moreover, ifg is even inx,

0 < r < R, andx > L, then

g(x, r) =
∞∑

l=0

∞∫

0

oa,leven(x, r)G
l
even(a) da.

3. Gl
odd(a) is well defined iff ∈ S andg = Rf . Moreover, ifg is odd inx,

0 < r < R, andx > L, then

g(x, r) =
∞∑

l=0

∞∫

0

oa,lodd(x, r)G
l
odd(a) da.

Proof:

Let f ∈ S andg = Rf .

1. (a) First the well-definedness ofGrange will be shown.

|S1|π
2
|Grange(a, b)|

= |S1|
∣∣< oa,brange(x, r), g(x, r) >orange

∣∣

= |S1|

∣∣∣∣∣∣

∞∫

R

∫R δ(x− a)
cos
(
b
√
r2 −R2

)
√
r2 −R2

g(x, r)r
√
r2 − R2 dx dr

∣∣∣∣∣∣

= |S1|

∣∣∣∣∣∣

∫R ∞∫

R

δ(a− x)r cos
(
b
√
r2 −R2

)
g(x, r) dr dx

∣∣∣∣∣∣

= |S1|

∣∣∣∣∣∣

∞∫

R

r cos
(
b
√
r2 − R2

)
g(a, r) dr dx

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∞∫

R

r cos
(
b
√
r2 − R2

)∫

S1

f(a+ rξ, rη) dS1(ξ, η) dr

∣∣∣∣∣∣
.
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With
(
rξ
rη

)
= y =

(
y1
y2

)

|S1|π
2
|Grange(a, b)|

=

∣∣∣∣∣∣∣

∫

‖y‖>R

cos
(
b
√

y2 −R2
)
f(a+ y1, y2) dy

∣∣∣∣∣∣∣

≤
∫

‖y‖>R

|f(a+ y1, y2)| dy.

The last integral is finite, becausef ∈ S .

(b) Now it will be shown thatg can be recovered forr > R.

∞∫

0

∫R oa,brange(x, r)Grange(a, b) da db

=

∞∫

0

∫R Grange(a, b)χ(R,∞)(r)δ(x− a)
cos
(
b
√
r2 −R2

)
√
r2 −R2

da db

=

∞∫

0

∫R χ(R,∞)(r)


 2

π

∫R ∞∫

R

δ(a− x′)r′ cos
(
b
√
r′2 − R2

)

× g(x′, r′) dr′ dx′

)
δ(x− a)

cos
(
b
√
r2 −R2

)
√
r2 − R2

da db

= χ(R,∞)(r)

∞∫

0

2

π




∞∫

R

r′ cos
(
b
√
r′2 − R2

)
g(x, r′) dr′




× cos
(
b
√
r2 −R2

)
√
r2 −R2

db

With the substitutionr′′ =
√
r′2 −R2 andC

[
·g
(
x,
√
·2 +R2

)]
indi-

cating the cosine transform ofr′′g
(
x,
√
r′′2 +R2

)
with respect tor′′
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it follows that

∞∫

0

∫R oa,brange(x, r)Grange(a, b) da db

= χ(R,∞)(r)

∞∫

0

2

π




∞∫

0

cos(br′′)r′′g
(
x,
√
r′′2 +R2

)
dr′′




× cos
(
b
√
r2 − R2

)
√
r2 − R2

db

=
χ(R,∞)(r)√
r2 −R2

∞∫

0

√
2

π
C

[
·g
(
x,
√
·2 +R2

)]
(b)

× cos
(
b
√
r2 − R2

)
db

=
χ(R,∞)(r)√
r2 −R2

√
r2 − R2g

(
x,

√√
r2 −R2

2
+R2

)

= χ(R,∞)(r)g
(
x,
√
r2 −R2 +R2

)
= χ(R,∞)(r)g(x, r).

2. Assume without loss of generality thatg is even inx.

(a) First the well-definedness ofGeven will be shown.

|S1| R
ǫla

∣∣Gl
even(a)

∣∣

= |S1|1
2

∣∣< oa,leven(x, r), g(x, r) + g(−x, r) >oeven

∣∣

= |S1|1
2

∣∣∣∣∣∣

R∫

0

∞∫

L

J0
(
a
√
x2 − L2

) cos
(
l π
R

√
R2 − r2

)
√
R2 − r2

×(g(x, r) + g(−x, r))r
√
R2 − r2x dx dr

∣∣∣

= |S1|

∣∣∣∣∣∣

∞∫

L

xJ0
(
a
√
x2 − L2

)

×
R∫

0

cos
(
l
π

R

√
R2 − r2

)
rg(x, r) dr dx

∣∣∣∣∣∣
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=

∣∣∣∣∣∣

∞∫

L

xJ0
(
a
√
x2 − L2

) R∫

0

cos
(
l
π

R

√
R2 − r2

)
r

×



∫

S1

f(x+ rξ, rη) dS1(ξ, η)


 dr dx

∣∣∣∣∣∣

≤ C

R∫

0

∫

S1

∞∫

L

|xf(x+ rξ, rη)| dx dS1(ξ, η) dr

with an appropriate constantC > 0. The change in the order of inte-
gration is valid and the last integral is finite becausef ∈ S .

(b) Now it will be shown that the even part ofg can be recovered for
0 ≤ r < R and|x| > L.

∞∑

l=0

∞∫

0

oa,leven(x, r)G
l
even(a) da

=
(
χ(−∞,−L)(x) + χ(L,∞)(x)

)
χ(0,R)(r)

∞∑

l=0

∞∫

0

J0
(
a
√
x2 − L2

)

× cos
(
l π
R

√
R2 − r2

)
√
R2 − r2


 ǫl
2R

∞∫

L

ax′J0
(
a
√
x′2 − L2

)

×
R∫

0

cos
(
l
π

R

√
R2 − r′2

)
r′(g(x′, r′) + g(−x′, r′)) dr′ dx′


 da

=
(
χ(−∞,−L)(x) + χ(L,∞)(x)

)
χ(0,R)(r)

∞∑

l=0

∞∫

0

J0
(
a
√
x2 − L2

)

× cos
(
l π
R

√
R2 − r2

)
√
R2 − r2


 ǫl
R

∞∫

L

ax′J0
(
a
√
x′2 − L2

)

×
R∫

0

cos
(
l
π

R

√
R2 − r′2

)
r′g(x′, r′) dr′ dx′


 da.

The substitutionsx′′ =
√
x′2 − L2 and r′′ =

√
R2 − r′2 yield with

gl
(√

x′′2 + L2
)

representing the Fourier coefficients corresponding to
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r′′g
(√

x′′2 + L2,
√
R2 − r′′2

)
andgl

(√
·2 + L2

)
indicating the Hankel

transform ofgl
(√

x′′2 + L2
)

with respect tox′′

∞∑

l=0

∞∫

0

oa,leven(x, r)G
l
even(a) da

=
(
χ(−∞,−L)(x) + χ(L,∞)(x)

)
χ(0,R)(r)

∞∑

l=0

∞∫

0

J0
(
a
√
x2 − L2

)

× cos
(
l π
R

√
R2 − r2

)
√
R2 − r2

ǫl
R

∞∫

0

ax′′J0(ax
′′)

×
R∫

0

cos
(
l
π

R
r′′
)
r′′g
(√

x′′2 + L2,
√
R2 − r′′2

)
dr′′ dx′′ da

=
(
χ(−∞,−L)(x) + χ(L,∞)(x)

)
χ(0,R)(r)

∞∑

l=0

cos
(
l π
R

√
R2 − r2

)
√
R2 − r2

×
∞∫

0

aJ0
(
a
√
x2 − L2

) ∞∫

0

x′′J0(ax
′′)gl

(√
x′′2 + L2

)
dx′′ da

=

(
χ(−∞,−L)(x) + χ(L,∞)(x)

)
χ(0,R)(r)√

R2 − r2

∞∑

l=0

cos
(
l
π

R

√
R2 − r2

)

×
∞∫

0

aJ0
(
a
√
x2 − L2

)
gl

(√
·2 + L2

)
(a) da

=

(
χ(−∞,−L)(x) + χ(L,∞)(x)

)
χ(0,R)(r)√

R2 − r2

×
∞∑

l=0

cos
(
l
π

R

√
R2 − r2

)
gl

(√√
x2 − L2

2
+ L2

)

=

(
χ(−∞,−L)(x) + χ(L,∞)(x)

)
χ(0,R)(r)√

R2 − r2

×
∞∑

l=0

cos
(
l
π

R

√
R2 − r2

)
gl(x)

44



=

(
χ(−∞,−L)(x) + χ(L,∞)(x)

)
χ(0,R)(r)√

R2 − r2

×
√
R2 − r2 g

(
x,

√
R2 −

√
R2 − r2

2
)

=
(
χ(−∞,−L)(x) + χ(L,∞)(x)

)
χ(0,R)(r)g(x, r).

3. Assume without loss of generality thatg is odd inx.

(a) First the well-definedness ofGodd will be shown.

|S1| R
ǫla

∣∣Gl
odd(a)

∣∣

= |S1|1
2

∣∣∣< oa,lodd(x, r), g(x, r)− g(−x, r) >oodd

∣∣∣

= |S1|1
2

∣∣∣∣∣∣

R∫

0

∞∫

L

xJ0
(
a
√
x2 − L2

) cos
(
l π
R

√
R2 − r2

)
√
R2 − r2

×(g(x, r)− g(−x, r))r
√
R2 − r2

1

x
dx dr

∣∣∣∣

= |S1|

∣∣∣∣∣∣

∞∫

L

xJ0
(
a
√
x2 − L2

)

×
R∫

0

cos
(
l
π

R

√
R2 − r2

) 1

x
rg(x, r) dr dx

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∞∫

L

J0
(
a
√
x2 − L2

) R∫

0

cos
(
l
π

R

√
R2 − r2

)
r

×



∫

S1

f(x+ rξ, rη) dS1(ξ, η)


 dr dx

∣∣∣∣∣∣

≤ C

R∫

0

∫

S1

∞∫

L

|f(x+ rξ, rη)| dx dS1(ξ, η) dr

with an appropriate constantC > 0. The change in the order of inte-
gration is valid and the last integral is finite becausef ∈ S .

(b) Now it will be shown that the odd part ofg can be recovered for0 ≤
r < R and|x| > L.
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∞∑

l=0

∞∫

0

oa,lodd(x, r)G
l
odd(a) da

=
(
χ(−∞,−L)(x) + χ(L,∞)(x)

)
χ(0,R)(r)

∞∑

l=0

∞∫

0

xJ0
(
a
√
x2 − L2

)

× cos
(
l π
R

√
R2 − r2

)
√
R2 − r2


 ǫl
2R

∞∫

L

ax′J0
(
a
√
x′2 − L2

)

×
R∫

0

cos
(
l
π

R

√
R2 − r′2

)
r′
1

x′ (g(x
′, r′)− g(−x′, r′)) dr′ dx′


 da

=
(
χ(−∞,−L)(x) + χ(L,∞)(x)

)
χ(0,R)(r)

∞∑

l=0

∞∫

0

xJ0
(
a
√
x2 − L2

)

× cos
(
l π
R

√
R2 − r2

)
√
R2 − r2


 ǫl
R

∞∫

L

aJ0
(
a
√
x′2 − L2

)

×
R∫

0

cos
(
l
π

R

√
R2 − r′2

)
r′g(x′, r′) dr′ dx′


 da.

With the substitutionsx′′ =
√
x′2 − L2, r′′ =

√
R2 − r′2,

gl
(√

x′′2 + L2
)

indicating the Fourier coefficients corresponding to

r′′g
(√

x′′2 + L2,
√
R2 − r′′2

)
and 1√

·2+L2gl
(√

·2 + L2
)

representing

the Hankel transform of 1√
x′′+L2gl

(√
x′′2 + L2

)
it follows that

∞∑

l=0

∞∫

0

oa,lodd(x, r)G
l
odd(a) da

=
(
χ(−∞,−L)(x) + χ(L,∞)(x)

)
χ(0,R)(r)

∞∑

l=0

∞∫

0

xJ0
(
a
√
x2 − L2

)

× cos
(
l π
R

√
R2 − r2

)
√
R2 − r2

ǫl
R

∞∫

0

a
x′′

√
x′′ + L2

J0(ax
′′)
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×
R∫

0

cos
(
l
π

R
r′′
)
r′′g
(√

x′′2 + L2,
√
R2 − r′′2

)
dr′′ dx′′ da

=
(
χ(−∞,−L)(x) + χ(L,∞)(x)

)
χ(0,R)(r)

∞∑

l=0

cos
(
l π
R

√
R2 − r2

)
√
R2 − r2

× x

∞∫

0

aJ0
(
a
√
x2 − L2

) ∞∫

0

x′′J0(ax
′′)

× 1√
x′′ + L2

gl

(√
x′′2 + L2

)
dx′′ da

=
(
χ(−∞,−L)(x) + χ(L,∞)(x)

)
χ(0,R)(r)

∞∑

l=0

cos
(
l π
R

√
R2 − r2

)
√
R2 − r2

× x

∞∫

0

aJ0
(
a
√
x2 − L2

) 1√
·2 + L2

gl

(√
·2 + L2

)
(a) da

=

(
χ(−∞,−L)(x) + χ(L,∞)(x)

)
χ(0,R)(r)√

R2 − r2
x

∞∑

l=0

cos
(
l
π

R

√
R2 − r2

)

× 1√√
x2 − L2

2
+ L2

gl

(√√
x2 − L2

2
+ L2

)

=

(
χ(−∞,−L)(x) + χ(L,∞)(x)

)
χ(0,R)(r)√

R2 − r2

×
∞∑

l=0

cos
(
l
π

R

√
R2 − r2

)
gl(x)

=

(
χ(−∞,−L)(x) + χ(L,∞)(x)

)
χ(0,R)(r)√

R2 − r2

×
√
R2 − r2 g

(
x,

√
R2 −

√
R2 − r2

2
)

=
(
χ(−∞,−L)(x) + χ(L,∞)(x)

)
χ(0,R)(r)g(x, r).

�

Note that this theorem uses essentially the cosine and the Hankel transform and
it looks like an overly complicated formulation. However itis essential to choose
the functions like this to compute the inversions analytically.
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3.4 Reconstruction of the orthogonal functions

The previous chapter showed that the missing data from the unmeasurable region
can be projected onto the set of orthogonal functions{oa,brange : a ∈ R, b ≥ 0} ∪
{oa,leven, o

a,l
odd : a > 0, l ∈ N0} and can be retrieved again. In the following it

is therefore sufficient to consider only the orthogonal functions to examine the
error that arises from limited data. Now the reconstructions of these functions are
performed.

3.4.1 DEFINITION

Let f ∈ S (Rn×R), a ∈ Rn, andb ∈ R. Then(τ(a, b)f)(x, y) = f(x+a, y+ b).

3.4.2 THEOREM

1. Leta ∈ R, b ≥ 0, and

g(x, r) = oa,brange(x, r).

ThenRf = g with

f̂(ξ, η) =
1√
8π

|η|e−iaξ





cos
(

R
√

ξ2+η2−b2
)

√
ξ2+η2−b2

for
√

ξ2 + η2 > b

0 for
√

ξ2 + η2 < b

and

f(x, y) =
1√
8π

Hy
∂

∂y

×





cos
(

b
√

(x−a)2+y2−R2
)

√
(x−a)2+y2−R2

for
√

(x− a)2 + y2 > R

0 for
√

(x− a)2 + y2 < R,

where Hy refers to the Hilbert transform in y.

2. Leta ≥ 0, l ∈ N0, and

g(x, r) = oa,leven(x, r).
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ThenRf = g with

f̂(ξ, η) =
1√
2π

|η|sin
(
R
√

ξ2 + η2 + (l π
R
)2
)

√
ξ2 + η2 + (l π

R
)2

×





e−L
√

a2−ξ2√
a2−ξ2

for 0 < |ξ| < a

− sin
(

L
√

ξ2−a2
)

√
ξ2−a2

for |ξ| > a

and

f(x, y) =

√
2

π
Hy

∂

∂y

∫R 





J0
(
a
√
t2 − L2

)
for |t| > L

0 for |t| < L





×





cos
(

l π
R

√
R2−(x−t)2−y2

)

√
R2−(x−t)2−y2

for (x− t)2 + y2 < R2

0 for (x− t)2 + y2 > R2






 dt.

3. Leta ≥ 0, l ∈ N0, and

g(x, r) = oa,lodd(x, r).

ThenRf = g with

f̂(ξ, η) =− 1√
2π

|η| ∂
∂ξ

sin
(
R
√

ξ2 + η2 + (l π
R
)2
)

√
ξ2 + η2 + (l π

R
)2

×





e−L
√

a2−ξ2√
a2−ξ2

for 0 < |ξ| < a

− sin
(

L
√

ξ2−a2
)

√
ξ2−a2

for |ξ| > a

and

f(x, y) =

√
2

π
xHy

∂

∂y

∫R 





J0
(
a
√
t2 − L2

)
for |t| > L

0 for |t| < L





×





cos
(

l π
R

√
R2−(x−t)2−y2

)

√
R2−(x−t)2−y2

for (x− t)2 + y2 < R2

0 for (x− t)2 + y2 > R2






 dt.
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Proof:

1. Leta ∈ R, b ≥ 0, and

g(x, r) = oa,brange(x, r).

Then the three dimensional Fourier transform ofg is given by

ĝ(ξ, ρ) =
1√
2π

∫R ∞∫

0

e−ixξrJ0(rρ)g(x, r) dr dx

and with lemma 3.2.6

ĝ(ξ, ρ) =
1√
2π

e−iaξ





cos
(

R
√

ρ2−b2
)

√
ρ2−b2

for ρ > b

0 for ρ < b.

Therefore, according to theorem 2.1.3

f̂(ξ, η) =
1

2
|η|ĝ

(
ξ,
√
ξ2 + η2

)

=
1√
8π

|η|e−iaξ





cos
(

R
√

ξ2+η2−b2
)

√
ξ2+η2−b2

for
√

ξ2 + η2 > b

0 for
√

ξ2 + η2 < b.

Hence

f(x, y) =
1

2π

∫R ∫R eixξeiyηf̂(ξ, η) dη dξ

=
1

2π

∫R ∫R eixξeiyη

×


 1√

8π
|η|e−iaξ

cos
(
R
√

ξ2 + η2 − b2
)

√
ξ2 + η2 − b2

χ(b2,∞)(ξ
2 + η2)


 dη dξ

=
1

2π

1√
8π

τ(−a,0)Hy
∂

∂y

∫R ∫R eixξeiyη

×
cos
(
R
√

ξ2 + η2 − b2
)

√
ξ2 + η2 − b2

χ(b2,∞)(ξ
2 + η2) dη dξ

=
1√
8π

τ(−a,0)Hy
∂

∂y

∞∫

b

ρJ0(ρ
√

x2 + y2)
cos
(
R
√

ρ2 − b2
)

√
ρ2 − b2

dρ.
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With lemma 3.2.6 and because the Hankel transform is its own inverse, this
leads to

f(x, y) =
1√
8π

τ(−a,0)Hy
∂

∂y





cos
(

b
√

x2+y2−R2
)

√
x2+y2−R2

for
√

x2 + y2 > R

0 for
√

x2 + y2 < R

=
1√
8π

Hy
∂

∂y





cos
(

b
√

(x−a)2+y2−R2
)

√
(x−a)2+y2−R2

for
√
(x− a)2 + y2 > R

0 for
√
(x− a)2 + y2 < R.

2. Leta ≥ 0, l ∈ N0, and

g(x, r) = oa,leven(x, r).

Then the three dimensional Fourier transform ofg is given by

ĝ(ξ, ρ) =
1√
2π

∫R ∞∫

0

e−ixξrJ0(rρ)g(x, r) dr dx

and with lemmas 3.2.5 and 3.2.7

ĝ(ξ, ρ) =

√
2

π

sin
(
R
√
ρ2 + (l π

R
)2
)

√
ρ2 + (l π

R
)2





e−L
√

a2−ξ2√
a2−ξ2

for 0 < |ξ| < a

− sin
(

L
√

ξ2−a2
)

√
ξ2−a2

for |ξ| > a.

Thus, with theorem 2.1.3 it follows that

f̂(ξ, η) =
1

2
|η|ĝ

(
ξ,
√
ξ2 + η2

)

=
1√
2π

|η|sin
(
R
√
ξ2 + η2 + (l π

R
)2
)

√
ξ2 + η2 + (l π

R
)2

×





e−L
√

a2−ξ2√
a2−ξ2

for 0 < |ξ| < a

− sin
(

L
√

ξ2−a2
)

√
ξ2−a2

for |ξ| > a.

Therefore

f(x, y) =
1

2π

∫R ∫R eixξeiyηf̂(ξ, η) dη dξ.
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Applying the Fourier convolution theorem leads to

f(x, y) =
1

(2π)3/2
Hy

∂

∂y

∫R
×




∫R eitξ





e−L
√

a2−ξ2√
a2−ξ2

for 0 < |ξ| < a

− sin
(

L
√

ξ2−a2
)

√
ξ2−a2

for |ξ| > a





dξ

×
∫R ∫R ei(x−t)ξeiyη

sin
(
R
√
ξ2 + η2 + (l π

R
)2
)

√
ξ2 + η2 + (l π

R
)2

dξ dη


 dt

=

√
2

π
Hy

∂

∂y

∫R 


∞∫

0

cos(tξ)





e−L
√

a2−ξ2√
a2−ξ2

for 0 < |ξ| < a

− sin
(

L
√

ξ2−a2
)

√
ξ2−a2

for |ξ| > a





dξ

×
∞∫

0

J0
(
ρ
√

(x− t)2 + y2
) sin

(
R
√

ρ2 + (l π
R
)2
)

√
ρ2 + (l π

R
)2

dρ


 dt.

With lemmas 3.2.5 and 3.2.7 and bearing in mind that the Hankel transform
and the cosine transform are their respective inverses thisleads to

f(x, y) =

√
2

π
Hy

∂

∂y

∫R 





J0
(
a
√
t2 − L2

)
for |t| > L

0 for |t| < L





×





cos
(

l π
R

√
R2−(x−t)2−y2

)

√
R2−(x−t)2−y2

for (x− t)2 + y2 < R2

0 for (x− t)2 + y2 > R2






 dt.

3. Leta ≥ 0, l ∈ N0, and

g(x, r) = oa,lodd(x, r).

Then the proof is analogous to 2. usingx sin(xξ) = − ∂
∂ξ

cos(xξ).

�
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3.5 Numerical simulations

To imbue the unwieldy formulas from theorem 3.4.2 with life,in the following
some of the ghosts - functions that are in the null space of themeasurement oper-
ator due to limited data - derived in this theorem are shown. All of the following
examples can therefore be added to the reflectivity functionf without changing
the measured data. In all cases it is assumed thatL = R = 1, and the region
(x, y) ∈ [0, 1]× [0, 1] is shown. At first, examples forg ∈ {oa,brange : a ∈ R, b ≥ 0}
are shown, then examples forg ∈ {oa,leven : a > 0, l ∈ N0}. The examples for
g ∈ {oa,lodd : a > 0, l ∈ N0} are omitted because they differ from the examples of
g ∈ {oa,leven : a > 0, l ∈ N0} only by an additional factorx.

3.5.1 Reconstructions forg ∈ {oa,brange : a ∈ R, b ≥ 0}
Now two series of images are shown to demonstrate the effectsof the parameters
a andb for ghosts derived from functionsg ∈ {oa,brange : a ∈ R, b ≥ 0}. These
are the artifacts that can arise due to the limitation that the echoes from the emit-
ted waves can only be received up to the limited distanceR. In the first series
b is constant at0.25, anda is varied from−0.1 to 1.2. That range is sufficient
because reconstructions for different values ofa can be obtained via translations
in x, as can be seen from the formula in theorem 3.4.2,1. In the second series
a is constant at0.6, andb takes the values of0.25 and 1. Since the functions
g ∈ {oa,brange : a ∈ R, b ≥ 0} all have a singularity forr = R that would usually
not be reflected in real data and that would only obscure the interesting features,
only the differencesoa,brange − oa,0range are reconstructed. Thereby the singularity is
removed and that should lead to ghosts similar to those that can be expected in
reconstructions from real data. The maximum displayed in the following images
is capped at a reasonable level to enhance the visibility of the features. Otherwise
a couple of large peaks would distort the image. These peaks are located at the
points where the course of the depicted circles is close to a grid point. It should
be noted that the following reconstructions are only approximative because the
Hilbert transform from theorem 3.4.2 does only exist in the distributional sense,
even using the differences mentioned above. This should notbe a problem how-
ever since for real data the integration with the kernelḡr as in theorem 3.3.4 should
lead to a regular function.
Figures 3.1 to 3.4 each show a reconstruction ofoa,0.25range−oa,0range. Figure 3.1 displays
the result fora = −0.1, figure 3.2 fora = 0.3, figure 3.3 fora = 0.8, and figure
3.4 fora = 1.2. It can be clearly seen in figures 3.1 to 3.4 that the missing data
in this parameter range causes a circular artifact that is centered at(a, 0). These
artifacts remind of the artifacts seen in chapter 2, so this is a possible explanation.
It should be noted that the reconstructed functions are not0 for (x−a)2+y2 > R2
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Figure 3.1: Reconstructedf for g = Rf = o−0.1,0.25
range − o−0.1,0

range
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Figure 3.2: Reconstructedf for g = Rf = o0.3,0.25range − o0.3,0range
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Figure 3.3: Reconstructedf for g = Rf = o0.8,0.25range − o0.8,0range
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Figure 3.4: Reconstructedf for g = Rf = o1.2,0.25range − o1.2,0range
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although some reconstructions could lead to this assumption, but this is only an
effect of the overshadowing singularity. In the cross section of figure 3.4 it is
clearly visible that the reconstruction is greater than0 for (x− a)2 + y2 > R2.
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Figure 3.5: Reconstructedf for g = Rf = o0.6,0.25range − o0.6,0range
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Figure 3.6: Reconstructedf for g = Rf = o0.6,1range − o0.6,0range

Figures 3.5 and 3.6 each show a reconstruction ofo0.6,brange − o0.6,0range. Figure 3.5
delineates the result forb = 0.25 and figure 3.6 forb = 1. As can be seen, apart
from the scaling figures 3.5 and 3.6 are very similar. They depict a circle with
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center(0.6, 0) and radiusr. It can be seen in the cross section that the amplitude
changes due to the variation in the second parameter.

3.5.2 Reconstructions forg ∈ {oa,leven : a > 0, l ∈ N0}
In the following two groups of images, functionsg ∈ {oa,leven : a > 0, l ∈ N0}
are shown. The first group, forl = 1, comprises examples fora ∈ {1, 4, 16}
as does the second group, however forl = 16. As in the preceding subsection,
the functionsg ∈ {oa,leven : a > 0, l ∈ N0} all have a singularity forr = R
that would usually not be reflected in real data and that wouldonly obscure the
interesting features. This problem is solved in the same wayso that the shown
examples should lead to ghosts that can be expected in real data. As in the previous
subsection it should be noted that only an approximation is computed. But again
this should not be a problem as the same circumstances hold.

0 R
2

y

R
0

x L
2

L

y

f(13 , y), f(
2
3 , y)

Figure 3.7: Reconstructedf for g = Rf = o1,1even − o1,0even

Figures 3.7 to 3.9 each show a reconstruction ofoa,1even − oa,0even. Figure 3.7 depicts
the result fora = 1, figure 3.8 fora = 4, and figure 3.9 fora = 16. Figures 3.7
to 3.9 again show circular artifacts, but of a different kind. These artifacts show
the biggest variation in amplitude aroundx2 + y2 = L2. However the artifacts
clearly extend into the regionx2 + y2 < L2. Figures 3.7 and 3.8 remind of
artifacts that appear in reconstructions of objects close to the edges of the flight
track whereas figure 3.9 exhibits a higher frequency phenomenon that was not
encountered so far. In comparing figures 3.7 to 3.9 one can conclude that with
largera the amplitude of the artifact gets smaller and the frequencyof the artifacts
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Figure 3.8: Reconstructedf for g = Rf = o4,1even − o4,0even
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Figure 3.9: Reconstructedf for g = Rf = o16,1even − o16,0even
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becomes larger. This is understandable as the parametera affects the frequency in
the Bessel function.
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Figure 3.10: Reconstructedf for g = Rf = o1,16even − o1,0even
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Figure 3.11: Reconstructedf for g = Rf = o4,16even − o4,0even

Figures 3.10 to 3.12 each show a reconstruction ofoa,16even − oa,0even. Figure 3.10
displays the result fora = 1, figure 3.11 fora = 4, and figure 3.12 fora = 16.
For these figures the same holds as for figures 3.7 to 3.9. Again, similar to
the preceding subsection, an increase of the second parameter leads to a higher
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Figure 3.12: Reconstructedf for g = Rf = o16,16even − o16,0even

amplitude as demonstrated by figures 3.10 to 3.12. Additionally, the artifacts
seem to get sharper.
No reconstructions for the functionsg ∈ {oa,lodd : a > 0, l ∈ N0} are shown since
they would differ from the examples in this subsection only by an additional
gradient inx direction as can be clearly seen in theorem 3.4.2.

The computed ghosts partially show a close resemblance to the artifacts known
from reconstructions. Unfortunately the analysis of this chapter shows that the
common and unavoidable problem of limited data is not restricted to high fre-
quency artifacts. This urges a thorough examination of how these artifacts can
be avoided, e. g. by a regularization using information fromthe physical back-
ground. The knowledge about the nature of the ghosts that wasderived in this
chapter should hopefully simplify this task.
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Chapter 4

A new approach to invert the
spherical Radon transform

With the ideas from the last chapter, it is possible to reconstruct the recoverable
part off using orthogonal functions. In the following, a set of two dimensional,
orthogonal functions with a compact support will be introduced. Then it will be
shown that for functions that fulfill the properties of a measurement the infor-
mation gathered by the projections of the data onto the orthogonal functions is
sufficient to regain the data. Finally, the inversions of theorthogonal functions
will be calculated. With these results an alternative way toreconstruct the images
is obtained: First, the data is projected onto the orthogonal functions, and then the
inversions of the orthogonal functions are summed using thecoefficients obtained
from the projections.

4.1 Orthogonal functions and their transforms

Now a set of functions is defined, and it is shown that they are orthogonal.

4.1.1 LEMMA

Let L > 0, 0 < x < L, anda ≥ 0. Then with the Bessel function of order zero J0

L∫

0

cos
(
a
√
L2 − x2

)
√
L2 − x2

cos(xξ) dx =
π

2
J0
(
L
√

a2 + ξ2
)

.

Proof:
[25, I, §5, p. 30]

�
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4.1.2 DEFINITION

LetR,L > 0 andk, l ∈ N0. Define

1.

ik,leven(x, r) := χ(0,L)(x)χ(0,R)(r)
cos
(
k π
L

√
L2 − x2

)
√
L2 − x2

cos
(
l π
R

√
R2 − r2

)
√
R2 − r2

.

2.

ik,lodd(x, r) := χ(0,L)(x)χ(0,R)(r)x
cos
(
k π
L

√
L2 − x2

)
√
L2 − x2

cos
(
l π
R

√
R2 − r2

)
√
R2 − r2

.

4.1.3 PROPOSITION

LetR,L > 0, k, k′, l, l′ ∈ N0, k 6= k′, andl 6= l′. Then

1. the functions ik,leven(x, r) and ik
′,l′

even(x, r) are orthogonal to each
other with respect to the scalar product< f, g >ieven=
R∫
0

L∫
0

f(x, r)g(x, r)r
√
R2 − r2 x

√
L2 − x2 dx dr.

2. the functions ik,lodd(x, r) and ik
′,l′

odd (x, r) are orthogonal to each
other with respect to the scalar product< f, g >iodd=
R∫
0

L∫
0

f(x, r)g(x, r)r
√
R2 − r2

√
L2−x2

x
dx dr.

Proof:
LetR,L > 0 andk, k′, l, l′ ∈ N0. Then

1.

< ik,leven,i
k′,l′

even >ieven=

R∫

0

L∫

0

ik,leven(x, r)i
k′,l′

even(x, r)r
√
R2 − r2 x

√
L2 − x2 dx dr

=

R∫

0

L∫

0

cos
(
k π
L

√
L2 − x2

)
√
L2 − x2

cos
(
l π
R

√
R2 − r2

)
√
R2 − r2

cos
(
k′ π

L

√
L2 − x2

)
√
L2 − x2

× cos
(
l′ π
R

√
R2 − r2

)
√
R2 − r2

r
√
R2 − r2 x

√
L2 − x2 dx dr

=

R∫

0

L∫

0

cos
(
k
π

L

√
L2 − x2

)
cos
(
l
π

R

√
R2 − r2

)
cos
(
k′ π

L

√
L2 − x2

)

× cos
(
l′
π

R

√
R2 − r2

) r√
R2 − r2

x√
L2 − x2

dx dr.
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With the substitutionsr′ =
√
R2 − r2 andx′ =

√
L2 − x2

< ik,leven, i
k′,l′

even >ieven =

R∫

0

L∫

0

cos(k
π

L
x′) cos(l

π

R
r′) cos(k′ π

L
x′) cos(l′

π

R
r′) dx′ dr′

=
L

ǫk
δkk′

R

ǫl
δll′

with the Neumann’s numbersǫk, ǫl.

2.

<ik,lodd, i
k′,l′

odd >iodd=

R∫

0

L∫

0

ik,lodd(x, r)i
k′,l′

odd (x, r)r
√
R2 − r2

√
L2 − x2

x
dx dr

=

R∫

0

L∫

0

x
cos
(
k π
L

√
L2 − x2

)
√
L2 − x2

cos
(
l π
R

√
R2 − r2

)
√
R2 − r2

x
cos
(
k′ π

L

√
L2 − x2

)
√
L2 − x2

× cos
(
l′ π
R

√
R2 − r2

)
√
R2 − r2

r
√
R2 − r2

√
L2 − x2

x
dx dr

=

R∫

0

L∫

0

cos
(
k
π

L

√
L2 − x2

)
cos
(
l
π

R

√
R2 − r2

)
cos
(
k′ π

L

√
L2 − x2

)

× cos
(
l′
π

R

√
R2 − r2

) r√
R2 − r2

x√
L2 − x2

dx dr.

With the substitutionsr′ =
√
R2 − r2 andx′ =

√
L2 − x2

< ik,lodd, i
k′,l′

odd >iodd =

R∫

0

L∫

0

cos(k
π

L
x′) cos(l

π

R
r′) cos(k′ π

L
x′) cos(l′

π

R
r′) dx′ dr′

=
L

ǫk
δkk′

R

ǫl
δll′

with the Neumann’s numbersǫk, ǫl.

�

4.2 Projection of the data onto the orthogonal func-
tions

It will be shown that the measured data can be projected onto the set of orthogonal
functions and that it is completely recoverable from these projections.
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4.2.1 DEFINITION

Let f ∈ S , g = Rf , and letǫk, ǫl denote the Neumann’s numbers.

1.

Gk,l
even :=

ǫkǫl
2LR

< ik,leven(x, r), g(x, r) + g(−x, r) >ieven

2.

Gk,l
odd :=

ǫkǫl
2LR

< ik,lodd(x, r), g(x, r)− g(−x, r) >iodd

4.2.2 THEOREM

1. Gk,l
even is well defined, and iff ∈ S , g = Rf , 0 < r < R, 0 < x < L, and

g is even inx, then

g(x, r) =
∞∑

k,l=0

ik,leven(x, r)G
k,l
even.

2. Gk,l
odd is well defined, and iff ∈ S , g = Rf , 0 < r < R, 0 < x < L, andg

is odd inx, then

g(x, r) =

∞∑

k,l=0

ik,lodd(x, r)G
k,l
odd.

Proof:

Let f ∈ S , g = Rf , 0 < r < R, and0 < x < L.

1. Gk,l
even is obviously well defined since the integrals are finite. Assume with-
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out loss of generality thatg is even inx:

∞∑

k,l=0

ik,leven(x, r)G
k,l
even

= χ(0,R)(r)χ(0,L)(x)

∞∑

k,l=0

cos
(
k π
L

√
L2 − x2

)
√
L2 − x2

cos
(
l π
R

√
R2 − r2

)
√
R2 − r2

× ǫkǫl
2LR

< ik,leven(x, r), g(x, r) + g(−x, r) >ieven

= χ(0,R)(r)χ(0,L)(x)

∞∑

k,l=0

cos
(
k π
L

√
L2 − x2

)
√
L2 − x2

cos
(
l π
R

√
R2 − r2

)
√
R2 − r2

×
(

ǫkǫl
2LR

L∫

0

R∫

0

cos
(
k
π

L

√
L2 − x′2

)
cos
(
l
π

R

√
R2 − r′2

)

× x′r′(g(x′, r′) + g(−x′, r′)) dx′ dr′

)

= χ(0,R)(r)χ(0,L)(x)

∞∑

k,l=0

cos
(
k π
L

√
L2 − x2

)
√
L2 − x2

cos
(
l π
R

√
R2 − r2

)
√
R2 − r2

×
(
ǫkǫl
LR

L∫

0

R∫

0

cos
(
k
π

L

√
L2 − x′2

)
cos
(
l
π

R

√
R2 − r′2

)

× x′r′g(x′, r′) dx′ dr′

)

With the substitutionsx′′ =
√
L2 − x′2 and r′′ =

√
R2 − r′2

and gk,l representing the Fourier coefficients corresponding to
ǫkǫl
LR

x′′r′′g(
√
L2 − x′′2,

√
R2 − r′′2) it follows that

∞∑

k,l=0

ik,leven(x, r)G
k,l
even

= χ(0,R)(r)χ(0,L)(x)
∞∑

k,l=0

cos
(
k π
L

√
L2 − x2

)
√
L2 − x2

cos
(
l π
R

√
R2 − r2

)
√
R2 − r2

×
(
ǫkǫl
LR

L∫

0

R∫

0

cos
(
k
π

L
x′′
)
cos
(
l
π

R
r′′
)
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× x′′r′′g
(√

L2 − x′′2,
√
R2 − r′′2

)
dx′′ dr′′

)

= χ(0,R)(r)χ(0,L)(x)
1√

L2 − x2

1√
R2 − r2

×
∞∑

k,l=0

cos
(
k
π

L

√
L2 − x2

)
cos
(
l
π

R

√
R2 − r2

)
gk,l

= χ(0,R)(r)χ(0,L)(x)
1√

L2 − x2

1√
R2 − r2

×
√
L2 − x2

√
R2 − r2g

(√
L2 −

√
L2 − x2

2
,

√
R2 −

√
R2 − r22

)

= χ(0,R)(r)χ(0,L)(x)g(x, r).

2. Gk,l
odd is obviously well defined since the integrals are finite. Assume without

loss of generality thatg is odd inx:

∞∑

k,l=0

ik,lodd(x, r)G
k,l
odd

= χ(0,R)(r)χ(0,L)(x)
∞∑

k,l=0

x
cos
(
k π
L

√
L2 − x2

)
√
L2 − x2

cos
(
l π
R

√
R2 − r2

)
√
R2 − r2

× ǫkǫl
2LR

< ik,lodd(x, r), g(x, r)− g(−x, r) >iodd

= χ(0,R)(r)χ(0,L)(x)
∞∑

k,l=0

x
cos
(
k π
L

√
L2 − x2

)
√
L2 − x2

cos
(
l π
R

√
R2 − r2

)
√
R2 − r2

×
(

ǫkǫl
2LR

L∫

0

R∫

0

cos
(
k
π

L

√
L2 − x′2

)
cos
(
l
π

R

√
R2 − r′2

)

× r′(g(x′, r′)− g(−x′, r′)) dx′ dr′

)
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= χ(0,R)(r)χ(0,L)(x)
∞∑

k,l=0

x
cos
(
k π
L

√
L2 − x2

)
√
L2 − x2

cos
(
l π
R

√
R2 − r2

)
√
R2 − r2

×
(
ǫkǫl
LR

L∫

0

R∫

0

cos
(
k
π

L

√
L2 − x′2

)
cos
(
l
π

R

√
R2 − r′2

)

× r′g(x′, r′) dx′ dr′

)

With the substitutionsx′′ =
√
L2 − x′2 and r′′ =

√
R2 − r′2

and gk,l representing the Fourier coefficients corresponding to
ǫkǫl
LR

x′′

√
L2−x′′2 r

′′g(
√
L2 − x′′2,

√
R2 − r′′2) it follows that

∞∑

k,l=0

ik,lodd(x, r)G
k,l
odd

= χ(0,R)(r)χ(0,L)(x)
∞∑

k,l=0

x
cos
(
k π
L

√
L2 − x2

)
√
L2 − x2

cos
(
l π
R

√
R2 − r2

)
√
R2 − r2

×
(
ǫkǫl
LR

L∫

0

R∫

0

cos
(
k
π

L
x′′
)
cos
(
l
π

R
r′′
)

× x′′
√
L2 − x′′2

r′′g(
√
L2 − x′′2,

√
R2 − r′′2) dx′′ dr′′

)

= χ(0,R)(r)χ(0,L)(x)x
1√

L2 − x2

1√
R2 − r2

×
∞∑

k,l=0

cos
(
k
π

L

√
L2 − x2

)
cos
(
l
π

R

√
R2 − r2

)
gk,l

= χ(0,R)(r)χ(0,L)(x)x
1√

L2 − x2

1√
R2 − r2

×
√
L2 − x2

√
L2 −

√
L2 − x2

2

√
R2 − r2

× g(

√
L2 −

√
L2 − x2

2
,

√
R2 −

√
R2 − r22)

= χ(0,R)(r)χ(0,L)(x)g(x, r).

�

67



4.3 Reconstruction of the orthogonal functions

As seen above, the measurable data can be projected onto the set of orthogonal
functions{ik,leven, i

k,l
odd : k, l ∈ N0} and can be recovered again. In the follow-

ing it is therefore sufficient to perform the reconstructiononly for the orthogonal
functions.

4.3.1 THEOREM

1. Letk, l ∈ N0 and
g(x, r) = ik,leven(x, r).

Then

f̂(ξ, η) =

√
π

8
|η|J0

(
L

√
(k

π

L
)2 + ξ2

)
sin
(
R
√
(l π

R
)2 + ξ2 + η2

)
√

(l π
R
)2 + ξ2 + η2

and

f(x, y) =

√
π

2
Hy

∂

∂y

∫R 






cos(k π
L

√
L2−t2 )√

L2−t2
for |t| < L

0 otherwise





×





cos
(

l π
R

√
R2−(x−t)2−y2

)

√
R2−(x−t)2−y2

for (x− t)2 + y2 < R2

0 otherwise






 dt

and Hy refers again to the Hilbert transform iny.

2. Letk, l ∈ N0 and
g(x, r) = ik,lodd(x, r).

Then

f̂(ξ, η) = −
√

π

8
|η| ∂

∂ξ
J0

(
L

√
(k

π

L
)2 + ξ2

)
sin
(
R
√

(l π
R
)2 + ξ2 + η2

)
√

(l π
R
)2 + ξ2 + η2

and

f(x, y) =

√
π

2
xHy

∂

∂y

∫R 






cos(k π
L

√
L2−t2 )√

L2−t2
for |t| < L

0 otherwise





×





cos
(

l π
R

√
R2−(x−t)2−y2

)

√
R2−(x−t)2−y2

for (x− t)2 + y2 < R2

0 otherwise






 dt.

68



Proof:

1. Letk, l ∈ N0 and
g(x, r) = ik,leven(x, r).

Then the three dimensional Fourier transform ofg is given by

ĝ(ξ, ρ) =
1√
2π

∫R ∞∫

0

e−ixξrJ0(rρ)g(x, r) dr dx

and with lemmas 4.1.1 and 3.2.7

ĝ(ξ, ρ) =

√
π

2
J0

(
L

√
(k

π

L
)2 + ξ2

)
sin
(
R
√

(l π
R
)2 + ρ2

)
√
(l π

R
)2 + ρ2

.

With theorem 2.1.3 this results in

f̂(ξ, η) =
1

2
|η|ĝ

(
ξ,
√
ξ2 + η2

)

=

√
π

8
|η|J0

(
L

√
(k

π

L
)2 + ξ2

)
sin
(
R
√
(l π

R
)2 + ξ2 + η2

)
√

(l π
R
)2 + ξ2 + η2

.

Therefore

f(x, y) =
1

2π

∫R ∫R eixξeiyηf̂(ξ, η) dη dξ

and applying the Fourier convolution theorem leads to

f(x, y) =
1

2π

√
π

8
Hy

∂

∂y

∫R 

∫R eitξJ0

(
L

√
(k

π

L
)2 + ξ2

)
dξ

×
∫R ∫R ei(x−t)ξeiyη

sin
(
R
√

(l π
R
)2 + ξ2 + η2

)
√
(l π

R
)2 + ξ2 + η2

dξ dη


 dt

=

√
π

2
Hy

∂

∂y

∫R 


∞∫

0

cos(tξ)J0

(
L

√
(k

π

L
)2 + ξ2

)
dξ

×
∞∫

0

J0
(
ρ
√

(x− t)2 + y2
) sin

(
R
√

(l π
R
)2 + ρ2

)
√
(l π

R
)2 + ρ2

dρ


 dt.
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With lemmas 4.1.1 and 3.2.7 and because the Hankel transformand the
cosine transform are their respective inverses, this can bewritten as:

f(x, y) =

√
π

2
Hy

∂

∂y

∫R 






cos(k π
L

√
L2−t2 )√

L2−t2
for |t| < L

0 otherwise





×





cos
(

l π
R

√
R2−(x−t)2−y2

)

√
R2−(x−t)2−y2

for (x− t)2 + y2 < R2

0 otherwise






 dt.

2. Letk, l ∈ N0 and
g(x, r) = ik,lodd(x, r).

Then the proof is analogous to 1. usingx sin(xξ) = − ∂
∂ξ

cos(xξ).

�

4.3.2 REMARK

Gk,l
even andGk,l

odd can be computed via a fast two dimensional non-equidistant cosine
transform as described in [28]. As according to theorem 4.2.2

g(x, r) =
∞∑

k,l=0

(1 + x)
cos
(
k π
L

√
L2 − x2

)
√
L2 − x2

cos
(
l π
R

√
R2 − r2

)
√
R2 − r2

(Gk,l
even +Gk,l

odd),

it follows with the results of theorem 4.3.1 that

f(x, y) =
∞∑

k,l=0

(Gk,l
even +Gk,l

odd)

×
√

π

2
(1 + x)Hy

∂

∂y

∫R 






cos(k π
L

√
L2−t2 )√

L2−t2
for |t| < L

0 otherwise





×





cos
(

l π
R

√
R2−(x−t)2−y2

)

√
R2−(x−t)2−y2

for (x− t)2 + y2 < R2

0 otherwise






 dt.

This summation of the precomputed solutions of the orthogonal functions with the
appropriate weightsGk,l

even andGk,l
odd is not faster than the direct implementation of

the inversion formulas presented so far. However two improvements are possible.
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1. This inversion formula is adapted to the fact that the measured data is lim-
ited. Therefore it is probably easier to identify means to diminish the arti-
facts caused by this limitation.

2. Depending on the application, the coefficients representing higher frequen-
cies are probably prone to noise. Therefore it could be worthwhile to neglect
them in the summation to obtain a faster algorithm since these coefficients
do not contain much dependable information.
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Chapter 5

Tackling the left-right-ambiguity

The so called problem of the left-right ambiguity is one thatexists since the in-
vention of SAR and continues to be an issue, albeit alleviated, till this day [29]. It
refers to the fact that because of geometrical reasons the reconstruction formulas
in this field are not able to distinguish between points that lie symmetrically to the
left and right of the flight path. At first this problem seemed inevitable [13], [12],
but later, approaches to solve it were proposed. The method of beamforming [8],
for example, tries to overcome the ambiguity by directing the energy emitted from
the antenna as much toward one side of the flight track as possible. In this way
the echo from the illuminated side is much stronger than the echo from the other
side. Unfortunately these weak signals still lead to shadows in the reconstruction
for highly reflecting objects. A different solution was proposed in [30]. The idea
consisted of using data from two parallel flight tracks. However, singularities aris-
ing from noisy measurements present a serious problem in this approach.
Inspired by the idea of gathering and then combining data from two slightly dif-
ferent positions, two post-processing formulas are given in the following that ma-
nipulate the data measured by an airplane equipped with two or more antennas.
It is shown that it is possible to recover the odd part of the reflectivity function
from measurements with at least two antennas. The reconstruction of the origi-
nal image, including the odd part, is difficult for only two antennas, but it will be
shown that since the low frequencies are attenuated in the inversions of the spher-
ical Radon transform, it is possible. As will be seen, for a good reconstruction
quality it is nevertheless recommendable to use more than two antennas. This has
the additional advantage that no regularization is needed and therefore an exact
formula can be used.
The chapter is structured as follows. The first section will present analytic consid-
erations, which prove that it is possible to retrieve the original, asymmetric image
given at least two even images. This corresponds to a measurement with at least
two antennas. In the next section the two post-processing formulas are introduced.
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The first requires a sophisticated regularization whereas the second needs at least
three source-images as input. Afterwards the results of numerical simulations are
displayed.

5.1 Using two data sets

At first some definitions are necessary. Then the important trick is shown sepa-
rately, which makes the following central theorem fairly easy. At the end some
conclusions derived from the theorem are mentioned.

5.1.1 DEFINITION

Let f ∈ S (Rn ×R) andb ∈ R. Then

1. fF,I andf I,F denote the Fourier transform off in the firstn variables and
the last variable respectively.f I,I = f andfF,F = f̂ .

2. f (C,I)(x, y) = f(−x, y) andf (I,C)(x, y) = f(x,−y).

3. f e
b (x, y) =

1
2
[f(x, y + b) + f(x,−y + b)]

= 1
2
[(τ(0, b)f)(x, y) + (τ(0, b)f)

(I,C)(x, y)].

5.1.2 LEMMA

Let f ∈ S (Rn ×R) andb ∈ R. Then(τ(0, b)f)(I,C)(x, y) = τ(0,−b)f
(I,C).

Proof:

(τ(0, b)f)
(I,C)(x, y) = (τ(0, b)f)(x,−y) = f(x,−y + b)

= f (I,C)(x, y − b) = τ(0,−b)f
(I,C)(x, y).

�

Inspired by the ideas in [30], the following theorem is formulated.

5.1.3 THEOREM

Letf ∈ S (Rn ×R), b, η ∈ R, andx ∈ Rn. Then

sin(bη)f I,F (x, η) =
1

i
[f e

b − τ(0, −b)f
e
0 ]

I,F (x, η).

Proof:

sin(bη)f I,F (x, η) =
1

2i
[eibηf I,F (x, η)− e−ibηf I,F (x, η)]

=
1

2i
[τ(0, b)f − τ(0,−b)f ]

I,F (x, η)
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=
1

2i
[τ(0, b)f − τ(0, −b)f + (τ(0, b)f)

(I,C) − (τ(0, b)f)
(I,C)]I,F (x, η).

Using lemma 5.1.2,

sin(bη)f I,F (x, η)

=
1

2i
[τ(0, b)f + (τ(0, b)f)

(I,C) − τ(0,−b)f − (τ(0, −b)f
(I,C))]I,F (x, η)

=
1

2i
[2f e

b − τ(0,−b)(f + f (I,C))]I,F (x, η) =
1

i
[f e

b − τ(0,−b)f
e
0 ]

I,F (x, η).

�

This means that the data from two antennas with distanceb is sufficient to recover
sin(bη)f I,F .

5.1.4 REMARK

1. f I,F (x, η) cannot be recovered with two antennas with distanceb for
η ∈ π

b
Z.

2. f I,F (x, 0) = (f e
b )

I,F (x, 0) ∀b ∈ R.

5.1.5 COROLLARY

Letf ∈ S (Rn×R). If f e
b is known for allb ≥ 0, thenf is completely determined.

Proof:
If f e

0 is given, the even part off is known. The odd part is determined forb ≥ 0
by

1

2
[f(x, b)− f(x,−b)] =

1

2π

∫R sin(bη)

∫R sin(yη)f(x, y) dy dη

=
−i√
2π

∫R sin(bη)f I,F (x, η) dη

=
−1√
2π

∫R [f e
b − τ(0,−b)f

e
0 ]

I,F (x, η) dη.

�

5.2 Post-processing formulas

5.2.1 DEFINITION

Let f ∈ S (Rn ×R). Define

hb(η) := sin(bη)f I,F (x, η).
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It turns out that a noise resistant algorithm to recover the odd part of the reflectivity
functionf in addition to the even part is not so easily found due to the many zeros
of the sine. Some obvious regularizations such as

f I,F (x, η) ≈





(f e
a)

I,F (x, 0) for η = 0 with a ∈ {0, b}

sin(bη)hb(η)

sin2(bη)+ǫ
otherwise,

f I,F (x, η) ≈





(f e
a)

I,F (x, 0) for η = 0 with a ∈ {0, b}

sin(bη)hb(η)

sin2(bη)+ǫ cos2k(bη)
otherwise

or

f I,F (x, η) ≈





(f e
a)

I,F (x, 0) for η = 0 with a ∈ {0, b}

sin(bη)hb(η)

sin2(bη)+ǫ cos2k(bη)exp(dη2l) otherwise

with k, l ∈ N andǫ > 0 yield only high-pass-filtered images. The regularization

f I,F (x, η) ≈





(f e
a)

I,F (x, 0) for η = 0 with a ∈ {0, b},

sin(bη)hb(η)

sin2(bη)+ǫ cos2k(bη)(exp(dη2l)−1)
otherwise

did not provide satisfactory results either. To avoid the problem of a vanishing
denominator, two satisfactory solutions exist which will be given in the following
theorem.

5.2.2 THEOREM

Letf ∈ S (Rn ×R).
1. For two data sets, i.e. only oneb ∈ R, a regularization is necessary:

f I,F (x, η) ≈





(f e
a)

I,F (x, 0) for η = 0 with a ∈ {0, b}

sin(bη)hb(η)

sin2(bη)+H π
2b

(η)ǫ cos2k(bη)
otherwise

with ǫ > 0, k ∈ N, and the Heaveside functionH = χ( π
2b

,∞).

2. Form > 2 data sets, i.e. a setb1, ..., bm(m−1)/2 ∈ R, it is possible to choose
thebk in a way that the denominator does not vanish, e.g.b1 = 1, b2 = π.
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Therefore an analytically exact formula is achievable:

f I,F (x, η) =





(f e
bk
)I,F (x, 0) for η = 0 with

k ∈ {1, ..., m(m− 1)/2}

m(m−1)/2
∑

k=1
sin(bkη)hbk

(η)

m(m−1)/2
∑

k=1
sin2(bkη)

otherwise.

Proof:

1. Letη 6∈ π
2b
Z, k ∈ N, andǫ > 0. Then

sin(bη)hb(η)

sin2(bη) +H π
2b
(η)ǫ cos2k(bη)

=
sin2(bη)f I,F (x, η)

sin2(bη) +H π
2b
(η)ǫ cos2k(bη)

−→
ǫ→0

f I,F (x, η).

2. Letη 6= 0. Then

m(m−1)/2∑
k=1

sin(bkη)hbk(η)

m(m−1)/2∑
k=1

sin2(bkη)

=

m(m−1)/2∑
k=1

sin2(bkη)f
I,F (x, η)

m(m−1)/2∑
k=1

sin2(bkη)

= f I,F (x, η).

�

5.2.3 REMARK

1. The same as in theorem 5.2.2 could be shown for the other aforementioned
regularizations although they do not yield satisfactory results. However this
property is necessary to be a viable approach.

2. It is essential not to regularize everywhere. Otherwise only a high-pass
filtered image is obtained.

3. Considering the sampling-theorem, the formula for two data sets is exact if
supphb ⊂ (−π

b
,−π

b
), i.e. if the bandwidth off in y-direction is smaller

thanb.
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4. An advantage of using more than two data sets is a sizable reduction of
noise-effects by the weighted summation of the data.

5.3 Numerical simulations

In the following, two different kinds of numerical simulations will be shown. First,
to demonstrate the ability of the proposed algorithms in solving the left-right am-
biguity, a set of left-right symmetric images will be created that serve as input for
the algorithms. In this way artifacts arising from the inversion of the spherical
Radon transform are omitted, and it is possible to isolate the effects of the post-
processing formulas. Second, to show what results can be expected in reality,
measurements with multiple antenna positions will be simulated with the spher-
ical Radon transform that serve as data for reconstructionsaccording to theorem
2.3.6. Then the acquired left-right symmetric images are fed into the algorithms
to solve the left-right ambiguity.
In the following figures antenna distances will be given in multiples of the sam-
pling length (pixels). The noise is applied as a pixelwise multiplication with the
corresponding percentage multiplied with a completely uncorrelated (with regard
to pixels as well as pictures), normally distributed deviate with zero mean and unit
variance. Additionally a similarly structured absolute error is applied.
Figure 5.1 shows on the left hand side a simple circle with fivesmaller circles
arranged in a cross formation in it. The flight track, i. e. theleftmost antenna,
runs in a vertical line right in the middle of the figure with the additional antennas
on the right. In the following this will serve as the phantom for the attempts to
reconstruct the reflectivity functionf . The right hand side of figure 5.1 shows the
corresponding cross section.
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Figure 5.1: Reflectivity functionf
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5.3.1 Solving the left-right ambiguity with computed symmet-
ric images

In the following examples the even part off with respect to several flight tracks
is computed directly. These even images are combined to reconstruct the ground
reflectivity functionf according to the corresponding formulas in theorem 5.2.2.
As an example, figure 5.2 shows the symmetric input data, where the number
of circle pairs depends on the number of antennas employed and the distance
between the two circles of the pair is associated with the antenna distance. The
noise level is reflected in the intensity of the deviations and will be kept at a level
of 10% in this subsection.
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Figure 5.2: The even part off with respect to three different flight tracks with
10% noise

First, the influence of the antenna distance is demonstrated. Figures 5.3 to 5.6
contrast the achievable results for reconstructions with asmall antenna distance to
reconstructions with a large antenna distance.
In figure 5.3 the reconstruction for two antennas with a distance of one is de-
picted with the corresponding image in the Fourier space given in figure 5.4. The
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Figure 5.3: Two antennas with distance 1, 10% noise, spatialdomain
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Figure 5.4: Two antennas with distance 1, 10% noise, frequency domain. Left:
Logarithmic scale
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Figure 5.5: Two antennas with distance 9, 10% noise, spatialdomain
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Figure 5.6: Two antennas with distance 9, 10% noise, frequency domain. Left:
Logarithmic scale
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phantom is acceptably reconstructed and the mirror image isdecently suppressed.
Unfortunately an error in the low frequencies is annoying that is clearly visible
from the large values off I,F aroundη = 0 in the cross section of figure 5.4 and
the notable slope in the cross section of figure 5.3. Figures 5.5 and 5.6 show the
reconstruction and its Fourier transform for two antennas with a distance of nine.
In figure 5.5 the phantom seems to be out of focus with shadows to both sides.
Nevertheless the suppression of the mirror image is satisfactory. As can be seen
from the steep slope in the cross section in figure 5.3 and the large values off I,F

aroundη = 0 in the frequency domain in figure 5.4 in comparison with figure5.6,
small antenna distances lead to problems with the low frequencies. For large an-
tenna distances there are many frequencies missing on periodical, vertical stripes,
as becomes evident from figure 5.6. This is an effect of the regularization delin-
eated in theorem 5.2.2,1. An advantage is that there are almost no problems with
low frequencies.
This points to the possible benefits of a combination of more than two antennas,
as it is possible to choose one small and one large distance. The achievable im-
provements are demonstrated in figures 5.7 to 5.10 with threeand four antennas.
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Figure 5.7: Three antennas with positions 0, 2, and 5, 10% noise, spatial domain
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Figure 5.8: Three antennas with positions 0, 2, and 5, 10% noise, frequency do-
main. Left: Logarithmic scale

In figures 5.7 and 5.8 the reconstruction and its Fourier transform are depicted for
three antennas with distances two and five. The reconstruction quality improved
in comparison with the preceding figures, but there is still aslight slope visible in
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Figure 5.9: Four antennas with positions 0, 1, 4, and 9, 10% noise, spatial domain
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Figure 5.10: Four antennas with positions 0, 1, 4, and 9, 10% noise, frequency
domain. Left: Logarithmic scale

the cross section of figure 5.7. However, there are no frequencies missing since
a regularization is no longer necessary due to data from morethan two antennas
(see theorem 5.2.2). In figures 5.9 and 5.10 the result from four antennas with dis-
tances one, four, and nine can be seen. The quality of these figures is very good,
since the phantom is reconstructed very accurately and the mirror image is only
slightly visible. As can be seen from the preceding images, the reconstruction
quality improves with more antennas. Since there are problems, if only two an-
tennas are used, regardless of the distance, it is advisableto employ at least three
antennas to avoid these problems. The effects of more antennas with regards to
noise will be further discussed in subsection 5.3.3.

5.3.2 Solving the left-right ambiguity with reconstructedsym-
metric images

In the following examples measurements for several parallel flight tracks are sim-
ulated using the spherical Radon transform. Then the corresponding even images
are formed with the formula in theorem 2.3.6. Finally, the images are combined
to obtain the ground reflectivity functionf using the formulas in theorem 5.2.2.
As an example, figure 5.11 shows the data from the simulated measurements
where the number of boomerang-shapes depends on the number of antennas em-

82



ployed and the positions of the shapes are related to the antenna distances. The
noise level will be at a level of10% throughout this subsection.
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Figure 5.11: Measured data from three antennas with 10% noise

In the following, the effect of the antenna distance on the reconstruction quality is
examined. Figures 5.12 to 5.15 contrast the reconstructionwith a small antenna
distance to a reconstruction with a large antenna distance.
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Figure 5.12: Two antennas with distance 1, 10% noise, spatial domain
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Figure 5.13: Two antennas with distance 1, 10% noise, frequency domain. Left:
Logarithmic scale
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Figure 5.14: Two antennas with distance 9, 10% noise, spatial domain
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Figure 5.15: Two antennas with distance 9, 10% noise, frequency domain. Left:
Logarithmic scale
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Figures 5.12 and 5.13 display the reconstruction and its Fourier transform for two
antennas with a distance of one. The reconstruction of the phantom is satisfactory
as is the suppression of the mirror image. In comparison withfigures 5.3 and 5.4,
which show the corresponding images with the same number andplacement of
the antennas that are reconstructed from computed symmetric images, the error
in the low frequencies for small antenna distances is negligible, however figure
5.12 is affected by circular artifacts that arise from the noise in the inversion of
the spherical Radon transform. The small error in the low frequencies in figure
5.12 comes from a suppression of the low frequencies due to limited data in the
inversion of the spherical Radon transform. Figures 5.14 and 5.15 show the re-
construction for two antennas with a distance of nine and thecorresponding image
in the frequency domain. The phantom in figure 5.14 is very blurry - an effect of
the many missing frequencies that can be observed in figure 5.15. Surprisingly
however, the amplitude of the phantom is more exactly reconstructed in compar-
ison to figure 5.12. This points again to a more exact reconstruction of the low
frequencies for large antenna distances, although the effect is not as striking as in
subsection 5.3.1. This is also reflected in the slightly smaller maxima in figure
5.15.
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Figure 5.16: Three antennas with positions 0, 2, and 5, 10% noise, spatial domain
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Figure 5.17: Three antennas with positions 0, 2, and 5, 10% noise, frequency
domain. Left: Logarithmic scale

Again, this emphasizes that it could be an interesting idea to combine more than
two antennas as it could allow to gain the advantages of a small and a large antenna
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distance. The successes are demonstrated in figures 5.16 to 5.19.
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Figure 5.18: Four antennas with positions 0, 1, 4, and 9, 10% noise, spatial domain
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Figure 5.19: Four antennas with positions 0, 1, 4, and 9, 10% noise, frequency
domain. Left: Logarithmic scale

In figures 5.16 and 5.17 the results from three antennas with distances two and five
can be seen. The reconstruction is superior to the precedingtwo, but the amplitude
of the phantom is still not completely correct, as can be seenin the cross section
of figure 5.16. Again, with three antennas there are no frequencies missing, as
seen in figure 5.17, since no regularization is necessary. Figures 5.18 and 5.19
show the reconstruction and its Fourier transform for four antennas with distances
one, four, and nine. The reconstruction improved over the preceding one, but still
the amplitude of the phantom is not correct. This is an effectof the inversion
of the spherical Radon transform with limited data. Nevertheless the suppression
of the mirror image is good. As could be presumed, the low frequencies are
reconstructed quite nicely and there are no frequencies missing, as can be seen in
all four figures. The reconstruction quality improves further with more antennas,
as can be seen in comparison of figures 5.12, 5.14, 5.16, and 5.18. This is not only
an effect of averaging out the noise, but is amplified by a weighted summation of
the data, where the data is more heavily weighted the more noise resistant it is.
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5.3.3 Analysis of stability and the effects of noise

Now an analysis of noise effects and stability is performed.
Figures 5.20 to 5.25 show reconstructions from two antennaswith varying
amounts of noise. As in subsection 5.3.1, figures 5.20 to 5.22demonstrate only
the characteristics of the solution of the left-right ambiguity, whereas figures 5.23
to 5.25 contain also the artifacts arising due to the inversion of the spherical Radon
transform with limited data as in subsection 5.3.2.
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Figure 5.20: Two antennas with positions 0 and 1, no spherical Radon transform,
10% noise
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Figure 5.21: Two antennas with positions 0 and 1, no spherical Radon transform,
20% noise
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Figure 5.22: Two antennas with positions 0 and 1, no spherical Radon transform,
30% noise

Figures 5.20 to 5.22 show the reconstructions from computedeven images with

87



respect to two antennas with a distance of one. In figure 5.20 the noise level is at
10%, in figure 5.21 at 20%, and in figure 5.22 at 30%. In figure 5.20 the phantom
is clearly visible despite the known error in the low frequencies. The phantom in
figure 5.21 is obscured more strongly due to this problem, andin figure 5.22 it
is very difficult to discern the phantom from the underlying error. Nevertheless
it can be seen in the cross sections that the algorithm is stable since the cross
sections look quite similar disregarding the scaling, and there are no signs of an
overamplification of noise.
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Figure 5.23: Two antennas with positions 0 and 1, with spherical Radon transform,
10% noise
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Figure 5.24: Two antennas with positions 0 and 1, with spherical Radon transform,
20% noise
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Figure 5.25: Two antennas with positions 0 and 1, with spherical Radon transform,
30% noise

In figures 5.23 to 5.25 the reconstructions using the inversion of the spherical
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Radon transform for two antennas with a distance of one are depicted. In figure
5.23 the noise level is at 10%, in figure 5.24 at 20%, and in figure 5.25 at 30%. The
reconstruction quality in figure 5.23 is again acceptable, but declines for higher
noise levels as in figure 5.24. Finally, for a noise level of 30% the reconstruction
quality is not very good, but the phantom is still discernible in contrast to figure
5.22. All three images do not display the right amplitude of the phantom, but
as previously analyzed, this is an effect of the inversion with limited data. With
increasing noise levels the reconstruction degrades, but no uncontrolled noise am-
plification can be observed.
Figures 5.20 to 5.25 show that the reconstruction quality gets worse with a higher
amount of noise, since the amplitude of the error gets larger. Nevertheless there
are no signs of an overamplification of noise. The loss of reconstruction quality
is within the expected order of magnitude, so this points to the stability of the
algorithm.

Figures 5.26 to 5.31 compare the results for calculations with three antennas with
different noise severity. Figures 5.26 to 5.28 are directlycomputed from symmet-
ric images, whereas figures 5.29 to 5.31 are gained from inversions of the spherical
Radon transform.
Figures 5.26 to 5.28 show the reconstructions using computed symmetric images
with regard to three antennas with distances one and three. The noise level in
figure 5.26 is at 10%, in figure 5.27 at 20%, and in figure 5.28 at 30%. The
reconstruction of the phantom in figure 5.26 is satisfactorysince the amplitude is
close to the correct values. The suppression of the mirror image is also satisfying.
However there is still a problem with low frequencies as can be seen in the slight
slope in the cross section in figure 5.26. The reconstructionquality in figure 5.27
is worse. The phantom has a higher peak and the mirror image ismore strongly
visible. Additionally, the slope in the cross section of figure 5.27 is steeper which
points to a more severe problem with low frequencies. This tendency continues in
figure 5.28. The amplitude of the phantom is again farther off, albeit not by much,
and the mirror image is more pronounced. Also the slope in thecross section of
figure 5.28 steepened a bit.
In figures 5.29 to 5.31 the results for calculations with three antennas with dis-
tances of one and three using the inversion of the spherical Radon transform are
displayed. In figure 5.29 the noise level is at 10%, in figure 5.30 at 20%, and in
figure 5.31 at 30%. The reconstruction in figure 5.29 is quite good. The ampli-
tude of the phantom is not completely correct, but as alreadymentioned this is an
effect of the inversion of the spherical Radon transform dueto limited data. The
suppression of the mirror image is also acceptable. In figure5.30 a clearly inferior
reconstruction quality due to notable errors in the amplitude of the phantom and
less suppression of the mirror image can be observed. Figure5.31 is similar to
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Figure 5.26: Three antennas with positions 0, 1, and 3, no spherical Radon trans-
form, 10% noise
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Figure 5.27: Three antennas with positions 0, 1, and 3, no spherical Radon trans-
form, 20% noise
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Figure 5.28: Three antennas with positions 0, 1, and 3, no spherical Radon trans-
form, 30% noise
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Figure 5.29: Three antennas with positions 0, 1, and 3, with spherical Radon
transform, 10% noise

−256 0 256
y

128

0

−128

x

f(0, y)

y

Figure 5.30: Three antennas with positions 0, 1, and 3, with spherical Radon
transform, 20% noise
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Figure 5.31: Three antennas with positions 0, 1, and 3, with spherical Radon
transform, 30% noise
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figure 5.30, but overall the quality is a bit worse due to higher variances in the
phantom’s amplitude and the mirror image.
Figures 5.26 to 5.31 show comparable results to figures 5.20 to 5.25, but the qual-
ity is clearly better. The images with10% noise are satisfactorily reconstructed.

In order to examine, whether the reconstruction quality - especially with respect
to noise - can be enhanced with even more than three antennas,in the following
the results of calculations with four antennas will be discussed.
Figures 5.32 to 5.37 display reconstructions from four antennas with several noise
amplitudes. Figures 5.32 to 5.34 show only the effect of the solution of the left-
right ambiguity whereas figures 5.35 to 5.37 also include theartifacts from the
inversion of the spherical Radon transform.
Figures 5.32 to 5.34 display reconstructions from computedeven images for four
antennas with distances one, three, and eight. The noise level in figure 5.32 is at a
level of 10%, in figure 5.33 at 20%, and in figure 5.34 at 30%. Thereconstruction
in figure 5.32 is very good. The amplitude of the phantom is recovered very well
and the mirror image is quite small. Only a very slight slope can be detected in the
cross section. The quality in figure 5.33 declines, but nevertheless the amplitude
is almost on target and the suppression of the mirror image isstill acceptable.
Noticable however is the increased slope in comparison to figure 5.32. Figure
5.34 shows an additional decline in quality, but not as severe. The amplitude
deviates farther, and the slope is steeper. Most annoying however is the more
strongly pronounced mirror image.
Figures 5.35 to 5.37 delineate the results from the invertedspherical Radon trans-
forms using four antennas with distances one, three, and eight. In figure 5.35 the
noise level is at 10%, in figure 5.36 at 20%, and in figure 5.37 at30%. Figure
5.35 looks quite good. The suppression of the mirror image isadequate and the
amplitude of the reconstructed phantom is almost only plagued by the error due
to the inversion of the spherical Radon transform with limited data. In figure 5.36
the suppression is not as good and the amplitude of the phantom deviates farther.
Finally figure 5.37 displays a slightly larger deviation in the object’s amplitude
and a more noticable mirror image.
Figures 5.32 to 5.37 show a sizeable improvement with regardto figures 5.26 to
5.31. Now, even with20% noise the reconstructions seem quite useful and the
images with10% noise look rather good.

But this effect can be enhanced even more.
Figures 5.38 to 5.43 are reconstructions from five antennas with a maximum dis-
tance of 19 and varying amounts of noise. With regard to currently achievable
resolutions and the wingspan of the used airplanes, this distance corresponds to
an appropriate maximum antenna distance. Figures 5.38 to 5.40 are computed
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Figure 5.32: Four antennas with positions 0, 1, 3, and 8, no spherical Radon
transform, 10% noise
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Figure 5.33: Four antennas with positions 0, 1, 3, and 8, no spherical Radon
transform, 20% noise
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Figure 5.34: Four antennas with positions 0, 1, 3, and 8, no spherical Radon
transform, 30% noise
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Figure 5.35: Four antennas with positions 0, 1, 3, and 8, withspherical Radon
transform, 10% noise
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Figure 5.36: Four antennas with positions 0, 1, 3, and 8, withspherical Radon
transform, 20% noise
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Figure 5.37: Four antennas with positions 0, 1, 3, and 8, withspherical Radon
transform, 30% noise
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from symmetric images. Figures 5.41 to 5.43 are the results of a complete recon-
struction process, including the inversion of the spherical Radon transform.
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Figure 5.38: Five antennas with positions 0, 1, 3, 8, and 19, no spherical Radon
transform, 10% noise
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Figure 5.39: Five antennas with positions 0, 1, 3, 8, and 19, no spherical Radon
transform, 20% noise
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Figure 5.40: Five antennas with positions 0, 1, 3, 8, and 19, no spherical Radon
transform, 30% noise

Figures 5.38 to 5.40 show reconstructions from computed even images with re-
spect to five antennas with distances one, three, eight, and 19. The noise level in
figure 5.38 is at 10%, in figure 5.39 at 20%, and in figure 5.39 at 30%. Figure
5.38 exhibits an almost perfect reconstruction. The object’s amplitude is recov-
ered very accurately, and no slope is visible. The most notable feature however is
that the mirror image is almost undiscernible from the noisefloor. Also in figure
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5.39 a very good reconstruction can be seen. The amplitude ofthe phantom is
quite good, and again there is no slope. The mirror image is visible, but does not
stand out excessively. The reconstruction quality visiblein figure 5.40 is still re-
markable. The amplitude of the object is recovered closely and there is no slope.
The suppression of the mirror image is also very good.
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Figure 5.41: Five antennas with positions 0, 1, 3, 8, and 19, with spherical Radon
transform, 10% noise
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Figure 5.42: Five antennas with positions 0, 1, 3, 8, and 19, with spherical Radon
transform, 20% noise
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Figure 5.43: Five antennas with positions 0, 1, 3, 8, and 19, with spherical Radon
transform, 30% noise

Figures 5.41 to 5.43 delineate reconstructions using inversions of the spherical
Radon transform from five antennas with distances one, three, eight, and 19. In
figure 5.41 the noise level is at 10%, in figure 5.42 at 20%, and in figure 5.43 at
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30%. The reconstruction depicted in figure 5.41 is very good.The mirror image
almost drowns in the noise induced by the inversion of the spherical Radon trans-
form with limited data. Unfortunately there is still a gradient in the amplitude of
the phantom. However, as can be seen in comparison with figure5.38 this is ob-
viously an effect of the limited data inversion, too. Figure5.42 is still plagued by
the problems of the limited data inversion, but apart from that the reconstruction is
quite good. The suppression of the mirror image is still quite good. However the
phantom’s amplitude varies too much. Figure 5.43 displays astronger deviance in
the object’s amplitude. The mirror image is also more pronounced. Therefore the
reconstruction quality is a bit worse.
Figures 5.38 and 5.41 show only very scant signs of noise. Butalso figures 5.39
and 5.42 are acceptable and figures 5.40 and 5.43 show a large improvement in
comparison with reconstructions that use less antennas. Figures 5.38 to 5.43 show
a noticable improvement in comparison with figures 5.32 to 5.37. The most im-
portant improvement is the absence of a slope in figures 5.38 to 5.43, but also the
better suppression of the mirror image is obvious in all figures.
The results of subsection 5.3.3 show that the algorithms in theorem 5.2.2 are sta-
ble. Additionally, they show that it is advantageous to employ more than two
antennas and that better results can be expected for an increasing number of an-
tennas. So if an airplane would be used to its maximal capability, then even with
a large interference by noise very good images should be possible and the results
should be very stable. This culminates in the insight that even for very adverse
noise levels it is possible to receive good images if the whole wingspan of an
airplane can be used.
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Chapter 6

Conclusions and outlook

In this thesis several topics connected with SAR are addressed. Most of them will
help to increase image quality, but one raises questions that deserve further study.
In chapter 2 an important error in a common approach to invertthe spherical
Radon transform was analyzed and a solution was proposed. This allowed for a
promising new approach to alleviate the problem of limited data. The results of
numerical simulations are very promising. To improve the results even further, it
should be studied whether and what kind of decay in the approximatively contin-
ued data enhances the reconstruction quality.
Chapter 3 addressed the problem of limited data more thoroughly. The findings of
this chapter contribute to an understanding of the artifacts that frequently appear in
the numerical inversion of the spherical Radon transform. Unfortunately, it turned
out that the artifacts caused by limited data are not restricted to high frequencies,
as is the case in computerized tomography. Since this analysis should also hold
for other models of SAR, e.g. models using the wave equation,the implications
of this finding should be examined with great care. As can be seen in the numer-
ical simulations of chapter 2, the applied regularization has a strong influence on
the artifacts that appear in the reconstruction. Thereforethe physical meaning of
regularizations should be studied. Hopefully, this results in a reconstruction for-
mula that minimizes artifacts and that can be relied upon, because it matches the
physical conditions.
Chapter 4 presented another new way to invert the spherical Radon transform
that uses the ideas of chapter 3 to reduce the complexity of the problem with a
projection onto orthogonal functions. With the insight gained from chapter 3 it
might be possible to select some of these orthogonal functions to obtain good
reconstructions. If only a handful of these function would be accounted for, this
could also yield a fast way to invert the spherical Radon transform.
Chapter 5 dealt with the problem of the left-right ambiguitythat causes objects
that lie on one side of the flight track to appear in the reconstruction of both sides.
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With the postprocessing formula derived in this chapter it is possible to use recon-
structions from at least two antennas to solve this problem.The numerical sim-
ulations are very promising. It can be concluded that the reconstruction quality
improves with a higher number of antennas. It is however important to note that
this is not only the usual effect of averaging over more data to reduce noise. This
effect is amplified by a weighted summation of the data that emphasizes data less
affected by noise. Therefore if an ample number of antennas would be mounted
on an airplane, it should be possible to reconstruct images that show only very
scant errors despite heavy noise.
Because of the jitter of the airplane a modification of the formulas in this chap-
ter should be studied. It should be possible to obtain a similar formula that uses
the data instead of the reconstructed images as input. However it would be nec-
essary to mirror the data so it becomes an even function that has a meaning for
negative radii. Then the left-right ambiguity in the data could be treated in a sim-
ilar way as in chapter 5, and for each side of the flight track a separate inversion
could be performed. With this modification the fluctuation inairplane position
and heading would probably no longer pose a problem because it is very small
for one send/receive cycle. An additional advantage would be the fact, that the in-
version of the spherical Radon transform would have to be performed only twice
regardless of the number of antennas. This should speed up the reconstruction
considerably.
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