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Abstract—Conventional Synthetic Aperture Radar (SAR) sys-
tems are limited in their ability to satisfy the increasing re-
quirement for improved spatial resolution and wider coverage.
The demand for high resolution requires high sampling rates,
while coverage is limited by the pulse repetition frequency.
Consequently, sampling rate reduction is of high practical value
in SAR imaging. In this paper, we introduce a new algorithm,
equivalent to the well-known Range-Doppler method, to process
SAR data using the Fourier series coefficients of the raw signals.
We then demonstrate how to exploit the algorithm features to
reduce sampling rate in both range and azimuth axes and process
the signals at sub-Nyquist rates, by using compressed sensing
(CS) tools. In particular, we demonstrate recovery of an image
using only a portion of the received signal’s bandwidth and also
while dropping a large percentage of the transmitted pulses.
The complementary pulses may be used to capture other scenes
within the same coherent processing interval. In addition, we
propose exploiting the ability to reconstruct the image from
narrow bands in order to dynamically adapt the transmitted
waveform energy to vacant spectral bands, paving the way to
cognitive SAR. The proposed recovery algorithms form a new
CS-SAR imaging method that can be applied to high-resolution
SAR data acquired at sub-Nyquist rates in range and azimuth.
The performance of our method is assessed using simulated and
real data sets. Finally, our approach is implemented in hardware
using a previously suggested Xampling radar prototype.

Index Terms—synthetic aperture radar (SAR), compressed
sensing, sparse recovery, sub-Nyquist sampling, cognitive radar.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is a well proven radar
imaging technology that enables the production of high-

resolution images of targets and terrain. SAR can be oper-
ated at night and in adverse weather conditions, overcoming
limitations of optical and infrared systems. The basic idea
of SAR is that a single monostatic radar transmits pulses at
microwave frequencies at a uniform pulse repetition interval
(PRI) as it moves along a path. The echoes coming from
ground scatterers are then collected and processed in order to
generate a focused image. The coherent information recorded
at the different positions is used to synthesize a long antenna
in order to improve resolution.

Processing of SAR data requires two-dimensional space-
variant correlation of the raw data with the point scatter
response of the SAR data acquisition system [1]. A full two-
dimensional time domain correlation can handle the space-
variance, but is computationally inefficient. In order to acceler-
ate computation time, various algorithms have been developed
that impose different approximations on the correlation kernel
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[2], [3]. The Range-Doppler Algorithm (RDA) is the most
widely used approach for high resolution processing of SAR
data. It is conceptually the simplest, can accommodate range
varying parameters and is independent of the transmitted
pulse structure. An important part of RDA is the Range
Cell Migration Correction (RCMC) operation, which is aimed
at decoupling the dependency between the two dimensions
of the system, range and azimuth, which are also known
as fast-time and slow-time, respectively. This step requires
fine delay resolution in the Range-Doppler domain, which is
typically obtained by digital interpolation [4]. Interpolation
allows to reduce the sampling rate at the cost of additional
digital computations which effectively increase the rate in the
digital domain. In practice, oversampling is often employed
to eliminate artifacts caused by digital implementation of
standard RDA processing.

According to the Shannon-Nyquist theorem, the minimal
sampling rate at the SAR receiver should be at least twice
the bandwidth of the detected signal in order to avoid aliasing
[5]. In addition, the need to avoid azimuth ambiguities in the
resulting image is translated into a minimal pulse repetition
frequency (PRF) requirement. The PRF has to be greater
than the Doppler bandwidth of the received signals which is
dictated by several system parameters, i.e, platform velocity,
carrier frequency and the real antenna aperture. This, in fact,
limits the maximal swath of the system [6]. Consequently, this
two-dimensional dense sampling results in large data rates,
requiring large on board memory which may be restricted
by downlink throughput requirements, especially for orbital
missions.

The emerging theory of compressive sensing (CS) states that
a signal which is sparse in some basis, can be reconstructed
from highly incomplete samples or measurements [7], [8].
Since a SAR image is a map of a spatial distribution of the
reflectivity function of stationary targets and terrain, many
SAR images are sparse or compressible under an appropriate
basis such as wavelet, curvelet or total variation [9]. In this
paper we show that CS can be applied on both dimensions
of SAR. Rate reduction in range is realized by low rate
analog-to-digital conversion (ADC) at the receiver and azimuth
subsampling is expressed by the transmission of a smaller
number of pulses during a coherent processing interval (CPI).

A. Related Work

CS theory has shown promising results in the field of sub-
Nyquist sampling in radar applications. The use of Fourier
series coefficients in pulse-Doppler radar enables practical
sub-Nyquist sampling when the illuminated scene consists of
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TABLE I: List of Notation.

h(t), H[l] Transmitted signal and its Fourier coefficients
Bh SAR transmitted signal’s bandwidth
fs Receiver sampling rate
fc Carrier frequency
T Pulse repetition interval (PRI)

N = bTfsc Number of samples dictated by receiver sampling rate
M Number of transmitted pulses
αos Time oversampling factor
σ(r) Scene’s reflectivity map
~v SAR platform’s speed
c Speed of light

Θa Antenna’s angular aperture
dm(t), d[n,m], Dm[l] Returned signal from the mth pulse: continuous, sampled and the Fourier coefficients

d̃[n,m], D̃m[l] Raw data after range compression and its Fourier coefficients
Sk(t), S[n, k], Sk[l] Data after azimuth DFT: continuous, sampled and the Fourier coefficients
Ck(t), C[n, k], Ck[l] Data after RCMC: continuous, sampled and the Fourier coefficients

Y [n, k] Data after azimuth compression
qk,l(t) Weight function for Fourier coefficients relationship in RCMC
Qk,l[n] Fourier coefficients of the weight function qk,l(t)
ν(k, l) Subset of coefficients used for approximation of Ck[l]
βm The set of Fourier coefficients of dm(t) that correspond to its bandwidth
B Cardinality of βm
βk The set of Fourier coefficients of Ck(t) that correspond to its bandwidth

moving targets that correspond to a sparse range-Doppler map
[10]–[12]. CS has also been explored in a wide range of
radar imaging applications [13]. In [14], the authors applied
CS on SAR images by separating the processing into two
decoupled one-dimensional operations. They showed that CS
theory can then be applied in order to reduce the rate in
azimuth. However, since RCMC is ignored, this method does
not consider system setups with range varying parameters,
hence, the quality of some images might be degraded.

The authors in [15] and [16] used CS in order to reduce the
rate in both dimensions. In [15] RDA and CS were combined
in order to exploit RDA benefits, however, only linear interpo-
lation was considered. To achieve accurate results, the data is
normally oversampled and the kernel of the interpolator may
span many samples which comes at the expense of efficiency
and computational load. In [16], due to its simplicity, the
authors suggest a compressive sensing algorithm based on
the chirp scaling algorithm (CSA). This processing technique
does not require interpolation [3]. Unlike RDA, this method is
based on the assumption that the transmitted signal has a chirp
form and is known to be less robust to noise. Both methods
apply random sampling in time without proposing a practical
sampling mechanism which enables the extraction of the low-
rate samples directly from the analog signals.

Following subsampling, most of the existing CS imaging
schemes stack the entire two-dimensional reflectivity map into
a vector in order to apply CS recovery methods. For real SAR
images, this vectorization operation results in large memory
requirements and long reconstruction times. Alternatively, the
authors in [17] suggested to split the image into segments and
use several computing units to process the data in parallel and
solve the vectorized CS problem. This approach achieves bet-
ter runtime, but does not utilize the two-dimensional structure
of the SAR sampling problem.

B. Contributions

Our contribution is divided into three parts. First, we present
a new algorithm, equivalent to RDA, which handles the
burden of time interpolation via Fourier series coefficients.
Our approach is based on a technique recently developed for
ultrasound imaging, called beamforming in frequency [18],
[19]. This method shows that conventional beamforming in
time which is used to process ultrasound signals can be
equivalently performed in the Fourier domain. Adapting this
concept to SAR, the required non-integer non-constant shifts
in the RCMC stage are performed in frequency using similar
techniques. This leads to a new approach of Fourier domain
RDA which is completely equivalent to conventional RDA
processing and preserves image integrity. An advantage of
this method is that it allows to bypass oversampling which
is dictated by digital implementation of conventional RDA.

The second contribution is a two-dimensional sub-Nyquist
SAR system. Relying on Fourier domain RDA and CS, our
system enables sampling both range and azimuth axes below
the Nyquist rate. In the range direction, using the Xampling
approach [20], [21], we develop a SAR system that samples
with practical low rate ADCs. The Xampling (“compressed
sampling”) methodology, uses an architecture that includes an
ADC which performs analog prefiltering of the signal before
taking point-wise low-rate samples in order to generate sub-
Nyquist Fourier coefficients within certain bands instead of the
entire wideband [22]. In the azimuth direction, the reduction
allows to process the data and reconstruct the image when the
number of processed pulses during a CPI is lower than that
required by Nyquist. When one is interested only in range
subsampling, we offer a simplified system with better run time
[23].

Our sparse recovery algorithm is performed without the use
of vectorization, by exploiting the natural two-dimensional
structure of SAR data. The core of the method is based on
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the fast iterative shrinkage thresholding algorithm (FISTA)
[24], [25], which allows to handle practical limitations of real
SAR data. Using various sparsifying transforms, simulations
provided in Section VI show that following reduction of 24%
of the Nyquist samples in range, our sub-Nyquist sampling and
recovery methods preserve classic RDA processing quality.
Moreover, a reduction of more than 50% of the transmitted
pulses is presented via simulation for the azimuth axis sub-
Nyquist sampling. Simultaneous two-dimensional sub-Nyquist
sampling is applied on real SAR data of RADARSAT-1
satellite, leading to a total reduction of about 50% of the
original samples processed by conventional systems. Along
with software simulations, our hardware prototype demon-
strates that our technique can cope with practical limitations
and fits real radar imaging systems.

Finally, we show how the sub-Nyquist property of our
system can be exploited for cognitive SAR and reduced time-
on-scene. Specifically, we rely on the basic idea that if we are
able to reconstruct the image while sampling only part of the
data, then only this part should be transmitted. Thus, we do not
have to transmit the whole signal’s bandwidth nor the number
of pulses required by Nyquist. Consequently, time gaps (during
CPI) and frequency holes (within the signal’s energy) exist
in our system. For azimuth subsampling, analogously to the
reduced time-on-target concept applied to radar signals in [26],
we propose exploiting these time gaps to transmit pulses to
another zone, using electronic beam steering. This enables
capturing several scenes during the same CPI. For range
subsampling, we focus on adaptive transmission and reception
by modifying the emitted signal to transmit only over a small
number of narrow frequency bands and use our sparse recovery
method. Complying with the concept of cognitive radar (CR)
[27], which is defined as a radar system in which both the
transmitter and receiver are able to dynamically adjust to the
environment conditions, the bands support may vary with time
to allow for dynamic and flexible adaptation to the existing
spectrum. Such a system allows to cope with overloaded
spectrum by using a smaller portion of it. In addition, by
concentrating all the available power in the transmitted narrow
bands rather than over a wide spectral band, we increase the
signal to noise ratio (SNR) [26]. The fact that we earn higher
coverage and better SNR by exploiting the missing data, leads
to a sub-Nyquist SAR system which outperforms conventional
systems.

The remainder of this paper is organized as follows: In
Section II we describe the SAR model, the assumptions
we use for its simplification and review the classic Range-
Doppler algorithm. In Section III we introduce the Fourier
domain Range-Doppler method. Our two-dimensional sub-
Nyquist system using Fourier domain RDA is described in
Section IV, along with an analysis of noiseless recovery.
In Section V we introduce our cognitive and reduced time-
on-scene SAR systems. Simulation results on simulated and
real data are presented in Section VI. Finally, we show how
our approach is integrated into a stand-alone system, using
National Instrument (NI) hardware. Table I summarizes the
important notation used throughout the paper.

II. SAR MODEL AND THE RANGE-DOPPLER ALGORITHM

SAR spaceborne and airborne systems are based on a
radar which travels along a well defined path with velocity
~v and transmits every PRI, T , a time-limited pulse h(t) with
negligible energy at frequencies beyond Bh/2. The transmitted
pulses are sent from M different locations, {xm}M−1m=0 , where
x0 is the origin and ‖xm − x0‖ = m |~v|T is the platform
displacement at the mth location. The pulses are transmitted
into a scene with a stationary terrain reflectivity, σ(r), where
r = (x, r) is the scene spatial vector consisting of azimuth
and range axes, respectively.

The pulse h(t) is modulated by a pure tone with carrier
frequency fc, so that the transmitted signal is h(t)ej2πfct. The
received signal from the mth transmitted pulse, after coherent
demodulation, is given by

dm(t) =

∫
σ(r)h(t− 2 ‖r− xm‖ /c)wa(xm, r)× (1)

e−j4πfc‖r−xm‖/cdr,

where ‖r− xm‖ is the distance from the radar at position xm
to a scatter point at position r (no sensor movement is assumed
between transmission and reception of a pulse – the “stop-and-
hop” assumption) and wa(xm, r) is the antenna beam pattern.
The beam generally forms a spatial squared sinc function
with an angular aperture (main lobe) of Θa that is inversely
proportional to the antenna length. Its steering direction varies
depending on the SAR operation mode (stripmap, spotlight,
scan SAR, etc.), which are mainly distinguished by resolution
and coverage capabilities [4]. For the stripmap mode, the beam
pattern is

wa(xm, r) = sinc2
(
|x− xm|

r
cot

Θa

2

)
, (2)

where xm denotes the azimuth coordinate, x̂, of xm. A SAR
system model, for the stripmap mode, is depicted in Fig. 1.
In practice, dm(t) will be contaminated by additive white
Gaussian noise.

The goal of SAR imaging is to reconstruct the complex
scene reflectivity, σ(r), from the raw data returns in (1).
In order to perform processing, the analog signals are first
sampled. According to the Nyquist theorem, dm(t) should
be sampled at least at Bh, creating d[n,m] = dm(nTs),
with 0 ≤ n < N = bTfsc, where fs = 1/Ts is the
sampling rate at the receiver. In addition, the need to avoid
azimuth ambiguities in the resulting radar image leads to the
requirement of dense spatial sampling of the entire scene. This
dense sampling results in a minimum PRF requirement, which
spatially samples the scene every PRI. In the stripmap mode
an approximation of the beam pattern in (2) to a time window,
leads to a Doppler bandwidth of 2v/la, where la is the actual
antenna length [4].

After sampling the data is processed. Since the SAR ac-
quisition system is not space-invariant, various algorithms
have been developed in order to approximate the reflectivity
I ≈ σ(r) and to accelerate processing time [3]. RDA is
the most common approach and has one of the best accu-
racy/generality/efficiency tradeoffs among existing algorithms
[2]. There are three main steps in implementing RDA:
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σ(r)

r̂

x̂

~v · τ

Θa

x0 x1 xM−1

Fig. 1: SAR system model for the stripmap mode. The
coherent information is recorded at different positions, spaced
by a displacement of ~vτ . At every position the radar, which
has an angular aperture of Θa, captures a part of the scene
reflectivity, σ(r).

1) Range compression.
2) Range cell migration correction.
3) Azimuth compression.
In order to simplify the mathematical expressions we use

the “low squint angle” assumption in our derivation, namely,
the angle between the normal of the antenna’s plane and the
direction of transmission is assumed to be small. This means
that secondary range compression (SRC) is not used in the
processing flow. For high-squint cases, we can incorporate
SRC as another linear operator and modify the azimuth
matched filter accordingly, in order to enhance the focusing
ability [4].

The range compression stage uses the pulse compression
property which states that h(t) ∗ h∗(−t) = δ(t), where δ(t)
is a narrow pulse with width 1/Bh. The raw data d[n,m] is
therefore compressed in the range direction to

d̃[n,m] = d[n,m] ∗ h∗[−n]. (3)

Next, the raw data is transformed to the range-Doppler domain
via the discrete Fourier transform (DFT) along the azimuth
axis:

S[n, k] = DFTm
{
d̃[n,m]

}
=

M−1∑
m=0

d̃[n,m]e−j2πkm/M , (4)

followed by RCMC. The purpose of RCMC is to compensate
for the effect of range cell migration which were migrated
from their origin due to the varied satellite-scatterer distance
and to correct the hyperbolic behavior of the target trajectories.
The RCMC operator can be written as

C[n, k] = S
[
n+ n · ak2, k

]
. (5)

For every Doppler frequency k, the range axis is scaled by
1 + ak2. In stripmap mode we have, for example, a =

λ2

8|~v|2T 2M2 . As can be seen in (5), this range-variant shift

requires values which fall outside the discrete grid. There are
two ways to implement RCMC: In the first option, RCMC
is performed by range interpolation in the Range-Doppler
domain. However, this interpolation is time-consuming and
computationally demanding. The second approach involves the
assumption that the range cell migration is range invariant,
at least over a finite range block. In this case, RCMC is
implemented using an DFT, linear phase multiply, and inverse
DFT (IDFT) per block. However, this implementation has the
disadvantage that blocks have to overlap in range, and the
efficiency gain may not be worth the added complexity.

Following RCMC, the signal is compressed in the azimuth
direction. The low squint angle assumption enables the com-
pression by using a matched filter of a linear chirp [4]:

Y [n, k] = C[n, k]e−jπ
k2

Ka[n] , (6)

where Ka[n] is the range dependent azimuth chirp rate

Ka[n] =
4M2T 2|~v|2

λcnTS
. (7)

An IDFT in the azimuth direction results in the focused data:

I[n,m] = IDFTk {Y [n, k]} =
1

M

M−1∑
k=0

Y [n, k]ej2πmk/M .

(8)
Figure 2 depicts the RDA stages for equally spaced single-
point reflectors.

RDA is the preferred algorithm in most SAR operations
thanks to its high precision and generality. However, its main
disadvantage is the increase in processing due to the extra
interpolation. Thus, processing in the time domain imposes a
high sampling rate and considerable burden on the RCMC
block. We next show that the number of samples can be
reduced significantly by exploiting ideas of processing in the
Fourier domain, sub-Nyquist sampling and CS-based signal
reconstruction.

III. RANGE DOPPLER ALGORITHM VIA FOURIER
COEFFICIENTS

In this section we show that RDA can be performed in
frequency, using the Fourier series coefficients of the raw
data, paving the way to substantial reduction in the number of
samples needed to obtain the same image quality. In particular,
we adapt the idea of compressed beamforming in ultrasound
imaging [18], [19], to perform RCMC using Fourier series
coefficients instead of the expensive time-domain interpola-
tion without any assumptions on the signal structure or the
invariance of range blocks. This allows to transfer the process
of RDA to the frequency domain, and eliminate the need for
oversampling.

A. Fourier Domain RCMC

Similarly to [19] we begin by calculating the Fourier series
coefficients of the continuous version of (5)

Ck(t) = Sk
(
t(1 + ak2)

)
, (9)
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(a) (b) (c) (d) (e)

Fig. 2: The Range-Doppler Algorithm (RDA) stages for equally spaced single-point reflectors. (a) Raw data (real component).
(b) Range compression. (c) Azimuth DFT. (d) Range cell migration correction (RCMC). (e) Compressed image.

where Sk (nTs) = S[n, k]. Denote the Fourier series coeffi-
cients of Ck(t) with respect to the interval [0, T ) by

Ck[l] =
1

T

∫ T

0

I[0,Tk)(t)Ck(t)e−i
2π
T ltdt, (10)

where Tk = T/(1 + ak2) and I[a,b) is the indicator function
which equals 1 when a ≤ t < b and 0 otherwise. Substituting
(9) into (10) we get

Ck[l] =
1

T

∫ T

0

Sk(t)qk,l(t)dt, (11)

with

qk,l(t) = I[0,T )(t)
1

1 + ak2
exp

{
−i2π

T
lt

(
1

1 + ak2

)}
.

(12)
We next express Sk(t) in terms of its Fourier series coeffi-

cients representation

Sk(t) =

∞∑
n=−∞

Sk[n]ei
2π
T nt. (13)

Substituting into (11) leads to

Ck[l] =
1

T

∫ T

0

∞∑
n=−∞

Sk[n]ei
2π
T ntqk,l(t)dt (14)

=

∞∑
n=−∞

Sk[n]
1

T

∫ T

0

qk,l(t)e
−i 2πT (−n)tdt

=

∞∑
n=−∞

Sk[n]Qk,l[−n],

where Qk,l[n] are the Fourier series coefficients of qk,l(t).
Using the relationship between the continuous time Fourier
transform (CTFT) X(ω) and the Fourier series coefficients
C[l] of a finitely supported function x(t), C[l] = 1

TX
(
2π
T l
)
,

we get

Qk,l[n] =
1

1 + ak2
e
−jπ

(
n+ l

1+ak2

)
sinc

(
n+

l

1 + ak2

)
.

(15)
It is easy to see that most of the energy of the set

Qk,l[n] is concentrated around a specific component, nk,l =

round
(
− l

1+ak2

)
, where the round(·) operation rounds the

argument to its closest integer. This behavior is typical to any
choice of k or l. An example with k = 4, l = 4 and a = 2
is shown in Fig. 3. Thus, for every Doppler frequency k, the

−60 −40 −20 0 20 40 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Qk,l [n]

Fig. 3: The Fourier series coefficients {Qk,l[n]} of qk,l(t) are
characterized by a rapid decay, where most of the energy is
concentrated around nk,l. Here k = 4, l = 4 and a = 2, so
that nk,l = −2.

Fourier series coefficients of the scaled signal, Ck(t), can be
calculated as a linear combination (weighted sum) of a local
choice of Fourier series coefficients of Sk(t),

Ck[l] =
∑

n∈ν(k,l)
Sk[n]Qk,l[−n], (16)

where ν(k, l) is the set of indices which is dictated by the
decay property of (15).

We conclude that given Sk[l], (16) provides the Fourier
series coefficients, Ck[l], of the corrected signal Ck(t) defined
in (9).

B. Acquisition in Fourier Domain

Assuming that the samples can be extracted directly in the
Fourier domain, the samples are defined via

Dm[l] =
1

T

∫ T

0

dm(t)e−i
2π
T ltdt. (17)

We next show how the preliminary stages of RDA can be
performed in the Fourier domain as well.

Range compression is simply applied in the Fourier domain
by

D̃m[l] = T ·Dm[l]H∗[l], (18)
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where H[l] is the lth Fourier series coefficient of the transmit-
ted pulse, h(t). Next, we perform azimuth DFT on the range
Fourier samples

Sk[l] = DFTm
{
D̃m[l]

}
=

M−1∑
m=0

D̃m[l]e−i2πkm/M . (19)

For every Doppler frequency we then use (16) to apply
RCMC and calculate the (range) scaled signal Fourier series
coefficients. Applying an inverse Fourier transform on {Ck[l]}
reconstructs the corrected sampled signal after RCMC,

C[n, k] =

∞∑
l=−∞

Ck[l]ei
2π
T lnTs . (20)

We then continue to the original procedure by applying (6)
and (8) to complete the processing. A comparison between
Fourier domain RDA and conventional RDA is introduced in
Table II.

C. Sampling and processing at the Nyquist rate

In practice, SAR signals are sampled at rates which are
higher than the Nyquist rate. Moreover, prior to RCMC a
subsequent digital interpolation increases the effective rate of
the entire system even more. A typical oversampling factor of
1.5 to 4 times the transmitted signal bandwidth is usually used
in order to eliminate artifacts caused by digital implementa-
tion. While achieving the same results, we next show how our
algorithm may be performed without oversampling.

Denote by βm, |βm| = B, the set of Fourier series
coefficients of the detected signal, dm(t), that correspond to its
bandwidth, namely, the values of l for which Dm[l] is nonzero
(or larger than a threshold). The ratio between the cardinality
of the set βm and the overall number of samples N = bTfsc
required by standard RDA is dictated by the oversampling
factor.

The bandwidth of the returned signals in (1) is equal to
the bandwidth of the transmitted signal, H[l]. Thus, following
range compression in (18), the bandwidth of the signals
remains the same. Moreover, it is easy to see that the azimuth
DFT stage in (19) preserves the bandwidth of the range
compressed signal, and that for every Doppler frequency k,
the cardinality of the non-zero {Sk[l]} equals to B. However,
(16) implies that the bandwidth of the corrected signals fol-
lowing RCMC, βk, will contain at most B+ |ν(k, l)| nonzero
frequency components. Due to the azimuth DFT operation,
to compute the elements in βk all we need is the set βm
from each one of the detected signals. In a typical imaging
setup B is on the order of thousands of coefficients, while
ν(k, l), defined by the decaying properties of {Qk,l[n]}, is
typically no larger than 10. This implies that B � |ν(k, l)|,
so |βk| = B + |ν(k, l)| ≈ B. Hence, the bandwidth of the
corrected signals is approximately equal to the bandwidth of
the detected signals, which means that sampling and process-
ing can be done at the Nyquist rate and no oversampling
is required. In a typical system setup this reduction leads
to B/N = 2/3 to 1/4. Figure 4 depicts the Fourier series
coefficients which are taken within the effective bandwidth.

-50 -40 -30 -20 -10 0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

Fig. 4: Fourier series coefficients are taken within the effective
bandwidth of the returned signals. Since the signals are finite
in time the coherent information within the discrete frequency
samples is sufficient to handle SAR processing.

D. Simulation and validation

To demonstrate the equivalence of RDA in time and fre-
quency, we applied both methods on simulated SAR raw data.

First, we evaluate the required number of |ν(k, l)| by
measuring the reconstruction quality via the peak sidelobe
ratio (PSLR) of the point spread function (PSF) of the system.
Assuming that no windowing is applied to the range and
azimuth signals, the PSF can be approximately described as a
two-dimensional sinc function, and its beam widths in range
and azimuth are inversely proportional to the transmitted signal
bandwidth and the Doppler bandwidth, respectively. PSLR is
defined as the ratio of the peak intensity of the most prominent
sidelobe to the peak intensity of the main lobe, i.e., the smaller
the PSLR, the better an image quality.

The PSF was generated by a single reflector in the scene
center as the input of the system, σ(r) = δ(r−rc). Results are
shown in Fig. 5. It can be seen that |ν(k, l)| = 5 components
of each Sk[n] are sufficient to achieve almost the same quality,
visually and quantitatively.

In addition, we examined the equivalence of both methods
on SAR raw data which was simulated from a real SAR
image as a reflectivity map, σ(r). To verify the selection of
|ν(k, l)| we compare the resulting image of conventional RDA
processing with Fourier domain RDA using a varied number
of |ν(k, l)|. We measured the similarity using a state of the art
image quality assessment index call FSIM [28]. From Fig. 16
it is readily seen that the effect of considering more than 5
coefficients is negligible. The parameters of the system are
described in Table III. The ratio between the cardinality of
the set βm and the overall number of samples N , required by
standard RDA rate fs, is dictated by the oversampling factor,
αos. Since fs = αosN , the new rate leads to a reduction of
B/N = 1

2 . Figure 7(a) shows the image follows conventional
RDA processing while in Fig. 7(b) we use Fourier RDA
processing with |ν(k, l)| = 5. As can be readily seen, the
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Algorithm stage Range-Doppler Algorithm Fourier domain RDA

Range compression d̃[n,m] = d[n,m] ∗ h∗[−n] D̃m[l] = T ·Dm[l]H∗[l]

Azimuth DFT S[n, k] =
M−1∑
m=0

d̃[n,m]e−j2πkm/M Sk[l] =
M−1∑
m=0

D̃m[l]e−j2πkm/M

RCMC C[n, k] = S
[
n+ n · ak2, k

]
Ck[l] =

∑
n∈ν(k,l)

Sk[n]Qk,l[−n]

Azimuth compression Y [n, k] = C[n, k]e
−jπ k2

Ka[n] Y [n, k] =

( ∑
l∈βk

Ck[l]ei
2π
T
lnTs

)
e
−jπ k2

Ka[n]

Azimuth IDFT I[n,m] = 1
M

M−1∑
k=0

Y [n, k]ej2πmk/M I[n,m] = 1
M

M−1∑
k=0

Y [n, k]ej2πmk/M

TABLE II: Fourier domain RDA compared to conventional RDA
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Fig. 5: A point spread function (PSF) of a SAR system simulated with different RDA techniques (range is the vertical axis
and azimuth is the horizontal one). (a) Conventional RDA, PSLR = 13.32 [dB]. (b) Fourier domain RDA, |ν(k, l)| = 3, PSLR
= 11.7598 [dB]. (c) Fourier domain RDA, |ν(k, l)| = 5, PSLR = 13.29 [dB].
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Fig. 6: Similarity measured by FSIM between conventional
RDA and Fourier domain RDA for a varied number of Fourier
coefficients which are considered before RCMC, |ν(k, l)|.

images look identical. These results verify that both signals
and the resulting images are extremely similar.

To conclude this section, we presented a new algorithm,
equivalent to RDA, that instead of time interpolation, can
correct the migration of range cells in the Fourier domain. We
exploited the effective bandwidth of SAR signals and bypassed
oversampling, dictated by digital implementation of RCMC
in time without any over sampling factor, assumption on the

signal structure or the invariance of range blocks.

IV. TWO-DIMENSIONAL SUB-NYQUIST SAR

We now demonstrate how Fourier domain RDA allows for
sub-Nyquist sampling of the received signals, in both range
and azimuth, when exploiting sparsity of SAR images. This
two-dimensional reduction will enable perfect reconstruction
using less pulses and fewer samples from each individual
return.

A. Sampling rate reduction via compressed sensing

Denote by D̃ = {D̃m[l]} ∈ CB×M , 0 ≤ m < M, l ∈ βk,
the Fourier coefficients of the range compressed signals in
(18).

Having D̃, and using the processing stages in (4), (6), (8),
and (20), the relationship between the image and the processed
Fourier coefficients can be formulated as

D̃ = Q̃ (Fs [B ◦ (IF)]) F∗, (21)

where Fs = { 1
B e
−j 2π

B lk} ∈ CB×N is a partial DFT matrix,

B = {ejπ
k2

Ka[n] } ∈ CN×M is the azimuth compression matrix
from (6), F ∈ CM×M is the DFT matrix, ◦ is the Hadamard
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Fig. 7: Comparison between two reconstructed images. (a)
Conventional RDA using oversampled raw data. (b) Fourier
RDA, |ν(k, l)| = 5, with no oversampling.

product, I = {I[n,m]} ∈ CN×M is the desired image and
Q̃ (·) is the inverse RCMC operator, which should satisfy

Sk[l] =

∞∑
r=−∞

Ck[r]Q̃k,l[−r]. (22)

Under the low squint angle assumption (see Section IV-C), the
following proposition provides a simple expression for Q̃k,l[r].
Proposition: Suppose that ak2 � 1 for every 0 ≤ k < M .
Then a good approximation for the inverse of the Fourier
RCMC operator defined in (16) is given by

Q̃k,l[r] = (1 + ak2)e−jπ(r+l(1+ak2))sinc
(
r + l(1 + ak2)

)
.

(23)

Proof: To prove the result we need to show that for integer
values of n and l,

∞∑
r=−∞

Qk,r[−n]Q̃k,l[−r] ≈ δ[n− l], (24)

where δ[n− l] is the Kronecker delta.
For every n, l ∈ Z and 0 ≤ k < M we have
∞∑

r=−∞
Qk,r[−n]Q̃k,l[−r] =

∞∑
r=−∞

e
−jπ

(
−r−n+l( 1

1+ak2
+1+ak2)

)
(25)

×sinc

(
−n+

l

1 + ak2

)
sinc

(
−r + l(1 + ak2)

)
.

Using the fact that ak2 � 1 for every 0 ≤ k < M , the last
expression can be approximated by∑∞

r=−∞ e−jπ(−r−n+2l)sinc (−r + l) sinc (−n+ l) (26)

= sinc (−n+ l) ejπn
∞∑

r=−∞
e−jπ(−r+2l)sinc (−r + l)

= sinc (−n+ l) ejπne−jπl.

Finally, the result follows from the fact that sinc(−n + l) =
δ[n− l] for integer values of n and l. �

When there exists some basis in which I is sparsely repre-
sented, (21) becomes a CS problem that can be solved using
a smaller amount of rows and columns in D̃. Using `1 as a
sparsity measure, the resulting optimization problem is:

min ‖Ψ(I)‖1 s.t.
∥∥∥D̃p − Q̃p (Fs [B ◦ (IF)]) F∗p

∥∥∥2
F
< ε

(27)
where D̃p is both a column and row under-sampled version of
D̃, Q̃p (·) is the partial RCMC operator which considers only
the subsampled Fourier coefficients, F∗p is a column under-
sampled version of F∗, Ψ is a sparsifying transform operator,
‖·‖F is the Frobenius norm and ε is an appropriate noise
level which controls the fidelity of the reconstruction to the
measured data. We denote the subsets of rows and columns of
Dp by M̃ ⊆ {1, 2, . . . ,M} and κ̃ ⊆ βm, respectively.

There are various approaches to solve this optimization
problem. In the field of SAR, most of the existing CS schemes
stack the whole two-dimensional reflectivity map to a vector
[14], [16], [29]. The vectorized form of (27) is

min ‖Ψ(x)‖1 s.t. ‖y −Mx‖2 ≤ ε (28)

where x = vec (I), y = vec (C) and M = F̄∗pQ̄pF̄sB̄F̄

with F̄ = FT ⊗ Ĩ, B̄ = diag{vec(B)}, F̄s = Ĩ ⊗ Fs,
Q̄p = diag{Q(k)}, F̄∗p = F∗p

T⊗Ĩ, where⊗ is Kronecker prod-
uct and Ĩ is the identity matrix. A variety of CS techniques can
then be employed to solve (28), such as interior point methods
[30] and alternating direction method of multipliers (ADMM)
[31], [32]. Fast iterative shrinkage-thresholding algorithms
such as FISTA [24], [25] or its monotonic version MFISTA
[33] are more favorable in dealing with large dimensional
data since they do not require structure. Due to the long
reconstruction time and large memory requirements, it is
difficult to reconstruct a moderate-size scene using CS and
vectorization in practice.
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Instead, we next show how to solve (27) by extending
FISTA [24] to support two-dimensional matrix recovery which
fits the SAR problem without the use of vectorization. We
apply the same technique as in [34]. The proposed algorithm
is coined SAR FISTA.

In general, FISTA is aimed at minimizing an error function,
which in our case equals

G (I) =
∥∥∥D̃p − Q̃ (Fs [B ◦ (IF)]) F∗p

∥∥∥2
F
. (29)

It relies on soft thresholding and gradient decent. The soft
operator for a matrix X is defined via

soft (X, α) =
Xij

|Xij |
(|Xij | − α)+ . (30)

The Lipshitz constant of G (I), Lf , controls the gradient
decent step of the error function, which is given by

∇G (I) = 2
{

B ◦
[
FsHQ̃H

p

(
EFTp

)]}
FH , (31)

where H is the adjoint operator and

E = D̃p − Q̃p (Fs [B ◦ (IF)]) F∗p. (32)

Since reconstruction is performed using D̃p as the mea-
surements, range compression should be performed as a
preprocessing stage. For a given subsampled data, Dp, our
steps for reconstruction using SAR FISTA are summarized in
Algorithm 1. The runtime of Algorithm 1 is dictated by step
4, which considers the derivative of the RCMC operator. Since
the gradient decent step is repeated iteratively, this operation
constitutes the bottle neck of Algorithm 1. In Section IV-C we
show how to reduce runtime in the case in which only range
subsampling is required.

Algorithm 1 SAR FISTA reconstruction for two-dimensional
sub-Nyquist sampling

Input: SAR raw data xamples Dp = {Dm[l]}l∈κ̃
m∈M̃ ,

measurement matrices Fsp, B, F

Output: estimate for sparse coefficients of SAR image, X̂,
such that I = Ψ−1(X̂)

1: Initialization: D̃p =
{
D̃m[l]

}l∈κ
m∈M̃

← Dp via (18)

Initialize: X0 = 0, X1 = 0, t0 = 1, t1 = 1, k = 1
λ1, β ∈ (0, 1), λ̄ > 0

2: while not converged do
3: Zk = Xk + tk−1−1

tk

(
Xk −Xk−1)

4: Uk = Zk − 1
Lf
∇G

(
Ψ−1(X̂)

)
, via (31)

5: Xk+1 = soft
(
Uk, λkLf

)
6: tk+1 =

1+
√

4t2k+1

2
7: λk+1 = max

(
βλk, λ̄

)
8: k = k + 1
9: end while

X̂ = X

Algorithm 1 enables reconstruction of a SAR image, us-
ing less columns and rows of the raw data matrix, which

correspond to the emission of pulses and Fourier samples,
respectively. We next explain how the reduction in Fourier
samples is equivalent to the reduction of time domain samples
of the individual returns.

B. Analog-to-Digital rate reduction

In the previous sections, we assumed that a subset of Fourier
coefficients are given. However, in order to construct a real
sub-Nyquist sampling system, these coefficients should be
derived from low-rate time domain samples generated from
a low rate ADC. We next explain how the required Fourier
coefficients can be extracted from the raw data samples in
time.

Similarly to [18], we use the Xampling mechanism. The
Xampling philosophy ties together sub-Nyquist sampling
based on analog preprocessing with techniques of CS for
recovery. However, these approaches typically require sophis-
ticated sampling schemes, which acquire generalized mea-
surements of the analog signals [5], [35]. The authors in
[11] presented a concrete analog-to-digital conversion scheme
and a recovery algorithm for sampling radar signals at sub-
Nyquist rates. The analog input is split into channels, where
in each channel it is mixed with the selected harmonic signal,
integrated over the PRI duration, and then sampled. The
matching Fourier coefficients are then created digitally.

Using Xampling, the next question is which frequencies
should be selected, considering practical limitations. In CS,
the natural selection is to choose the coefficients randomly.
Unfortunately, this sampling strategy is not practical in hard-
ware. Some guidelines for choosing the frequencies, were
suggested in [36] in order to solve the trade-off between
noise robustness, which is increased by highly distributed
frequency samples and practical hardware implementation.
This trade-off is also between high resolution, which requires a
wide aperture, and avoiding ambiguities, which calls for close
frequencies. Coping with the practical limitation, similarly
to [11], a multiple bandpass sampling approach was chosen,
where four groups of consecutive coefficients are selected. The
board can be seen in Fig. 14(a).

We next examine three different practical sampling scenar-
ios, each consisting of 4 frequency bands. We transmit a linear
chirp into a one-dimensional synthesized scene, where 30% of
the scene samples are zero in the time domain, as well as in
the wavelet domain, under the Daubechies 4 basis. The first
frequency samples selection (marked as “PDF #1”) includes
the lower half of the frequency samples, the second selection
(“PDF #2”) includes a lowpass and a narrower bandpass and
the third selection (“PDF #3”) includes randomly selected 4
bands of frequency samples. An illustration of the selected
frequency bands for each of the scenarios is depicted in Fig. 8.

The reconstruction of the scene is performed using three
methods: direct reconstruction using matched filtering with
an appropriate subsampled chirp signal, reconstruction with
FISTA using Daubechies-4 wavelets as the sparsifying trans-
form, and reconstruction with FISTA using an identity trans-
form.
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Fig. 8: Frequency bands selection. (a) Low pass (“PDF #1”).
(b) A combination of low pass and a band pass (“PDF #2”).
(c) Random selection (“PDF #3”).

As seen in Fig. 9, the reconstruction quality using FISTA
surpasses direct reconstruction both qualitatively (the signals
recovered with FISTA show less ripple), as well as numeri-
cally: with PDF #3, the error norm for direct reconstruction
is around 0.228 while it is 0.084 for reconstruction with
FISTA under Wavelets, and 0.070 for reconstruction with
FISTA under an identity transform. The combination of CS
reconstruction (with an arbitrary sparsifying Ψ), along with
random bands selection, which best copes with the mentioned
trade-offs, provides the best performance for sub-Nyquist in
range. The randomness encourages dynamic changes which
are not limited to certain bands. We will use this property in
Section V-B, when we present the cognitive SAR concept.

C. Performance Improvement

As mentioned in Section IV-A, the heaviest part in terms of
runtime in Algorithm 1 is the gradient decent step which is
performed every iteration. Following [23], in the case that only
range subsampling is required and under certain assumptions,
we can simplify the algorithm. In particular, we next present
a method that exploits the structure of the RCMC operator in
(16), in order to take this operator out of the gradient step and
apply it only once.

Denote by C = {Ck[l]}l∈βk0≤k<M ∈ CB×M the partial Fourier
coefficients matrix of the corrected signals and by Q(·) the
RCMC operator which is defined via (16). Since the DFT is a
unitary matrix, right multiplying by F and applying Q(·) on
(21) leads to

C = Fs [B ◦ (IF)] , (33)

where C = Q(D̃F). Repeating the same steps as in Sec-
tion IV-A, the optimization problem in (27) becomes

min ‖Ψ(I)‖1 s.t.
∥∥Cp − Fsp [B ◦ (IF)]

∥∥2
F
< ε, (34)

where Cp and Fsp are row undersampled versions of C and
Fs.

In this case as well, we can reconstruct the image using
FISTA, where the gradient of the error function is

∇F (I) = 2
{

B ◦
[
FsH (Fs (B ◦ (IF))−C)

]}
FH . (35)

It can be seen that (22) is not part of the gradient step in (35).
The RCMC operator is performed only in the preprocessing
stage to create C. However, due to the fact that subsampling
is not performed on the raw data itself, we next have to figure
out how many Xamples, Dm[l], should be considered in order
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Fig. 9: One-dimensional signal reconstruction based on differ-
ent subsampling strategies (paired with zoomed part). (a) Di-
rect reconstruction using matched filtering. (b) Reconstruction
with FISTA under the wavelet transform. (c) Reconstruction
with FISTA under an identity transform.

to extract Cp. To answer this question, we examine κ ⊂ βm,
a subset of Dm[l].

Due to the decay property of (15), the relationship in (16)
implies that calculation of a specific Fourier coefficient Ck[l],
requires only |ν(k, l)| coefficients of {Sk[l]}l. The decay rate
of (15) and thus the cardinality of ν(k, l) is dictated by the
behavior of the sinc function and is independent of k or l.
We denote the cardinality of ν(k, l) by L. Thus, for a given
Doppler frequency k, in order to compute an arbitrary set of
B coefficients from {Ck[l]}l, only B+L coefficients {Sk[l]}l
are needed.

Considering the azimuth DFT in (19) it is easy to see that in
order to extract a specific coefficient Sk[l] we need the entire
set of {Dm[l]}m. Therefore, to evaluate an individual coeffi-
cient, Ck[l], the indices of the coefficients which should be
xampled from each individual signal are ν(k, l). Generalizing
the concept for the entire matrix, in order to extract Cp =

{Ck[l]}l∈κ0≤k<M , where κ ⊂ βk, only Dp = {Dm[l]}l∈κ̃0≤m<M
should be xampled, where κ̃ ⊂ βm. We next show that κ and
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κ̃ are of the same order of magnitude, which means that the
preprocessing stages do not influence the number of required
Xamples.

From the low squint angle assumption we have that when
the squint angle is low, the range cell migration is relatively
small. We may therefore assume that ak2 � 1 for every
0 ≤ k < M . To justify this assumption note that for the
stripmap mode ak2 = 1

8

(
λ
vT

)2 ( k
M

)2
< 1

8

(
λ
vT

)2
for every k.

In the SEASAT-A satellite [37], λ = 0.235 [m], v = 7000
[m/s], T = 0.6 [msec], which yields 1

8

(
λ
vT

)2
= 3.8 × 10−4,

justifying the approximation. This assumption means that the
most dominant coefficient, Qk,l[−n], is nk,l ≈ l, a fact which
implies that ν(k, l) is approximately independent of k, and
leads to the approximation that the azimuth DFT operation
does not influence the number of required xamples,

|κm| =

∣∣∣∣∣∣
⋃
k,l

ν(k, l)

∣∣∣∣∣∣ ≈ B + L. (36)

As was shown in Section III-D, we selected L to be 5. This
means that when B � L, the preprocessing stages do not
drastically enlarge the number of required Xamples.

Algorithm 2 SAR FISTA for sub-Nyquist sampling in range

Input: Xamples Dp = {Dm[l]}l∈κ̃0≤m<M , measurement
matrices Fsp, B and F

Output: estimate for sparse coefficients of SAR image, X̂,
such that I = Ψ−1(X̂)

1: Initialization: Cp = {Ck[l]}l∈κ0≤k<M ← Dp via (16), (18)
and (19)
Initialize: X0 = 0, X1 = 0, t0 = 1, t1 = 1, k = 1
λ1, β ∈ (0, 1), λ̄ > 0

2: while not converged do
3: Zk = Xk + tk−1−1

tk

(
Xk −Xk−1)

4: Uk = Zk − 1
Lf
∇F

(
Ψ−1(X̂)

)
, via (35)

5: Xk+1 = soft
(
Uk, λkLf

)
, via (30)

6: tk+1 =
1+
√

4t2k+1

2
7: λk+1 = max

(
βλk, λ̄

)
8: k = k + 1
9: end while

X̂ = X

Algorithm 2 describes the modified version of FISTA which
supports the structure of (34). Unlike Algorithm 1, it uses
the expensive three-dimensional operator in (16) only once at
the initialization stage while calculating Cp. For that reason,
if we only want to subsample in range, then Algorithm 2 is
preferred.

V. EXPLOITING GAPS IN TIME AND FREQUENCY

In Section IV we presented a sub-Nyquist framework which
allows two-dimensional subsampling along with reconstruc-
tion. As a result of the missing pulses and the reduced number
of Fourier coefficients, time gaps (during CPI) and frequency
holes (within the received signal’s spectrum) exist in our

PRI

CPI

Fig. 10: Reduced time-on-scene. The transmitted pulses are
non-uniformly sub-sampled. The complementary pulses are
exploited to capture another scene.

system. In this section we explain how to exploit these gaps
in each dimension.

A. Reduced Time-on-Scene

Algorithm 1 enables reconstruction of a sparse scene with
a number pulses which is less than the Nyquist requirement.
This sub-Nyquist sampling in the azimuth direction is, in
practice, a non-uniform transmission which results in time
gaps within the CPI where no echoes are recorded. This can be
interpreted as a reduced time-on-scene concept, which stands
for the reduction of time that the radar beam needs to steer at
the scatters within the scene. Similarly to [26], which uses the
same concept for radar signals, we propose to exploit these
time gaps, for sending pulses to other scenes. This allows
to capture several different regions within the same CPI and
therefore using the same size of memory to form several
images instead of one. This memory reduction has significant
meaning in orbital missions which are limited by on-board
memory and downlink throughput. The processing of each
image is performed separately, since every scene is processed
with its own partial Fourier IDFT matrix, F∗p in (27), with the
indices of the relevant pulses.

Although these time gaps are on the order of milliseconds,
phased array and electronic beam-steering techniques can aim
the beam to different directions within those time periods, by
controlling the phased array parameters [38]. In the simula-
tions, we show that two different scenes can be captured during
a single CPI. Figure 10 depicts the reduced time on scene and
time gaps exploitation concept.

In the next section we will demonstrate via simulations,
how sub-Nyquist in azimuth is exploited in order to capture a
wider area within the same CPI.

B. Frequency Adaptive Transmitter

We next show how to exploit our sub-Nyquist range abilities
to allow for dynamic adaptation of both the transmitted and
received signal spectrum, paving the way to cognitive SAR.
In particular, similarly to [39] we modify the transmitter of
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the radar prototype presented in [11] to adapt it to CR. Com-
bining the transmission of a few narrow bands and using the
reconstruction method described in Section IV-C, we propose
to enable dynamic spectrum changes of the transmitted SAR
waveform. This will not affect any aspect of our sub-Nyquist
processing since the received signal is preserved in the bands
of interest. Let H̃(ω, t) be the CTFT of the new transmitted
radar pulse,

H̃(ω, t) =

{
H(ω) ω ∈ Nb(t)
0 otherwise,

(37)

where

Nb(t) =
⋃

1≤i≤N
[f ix(t)−Bx(t)/2, f ix(t) +Bx(t)/2]

is the dynamic support of filtered N bands, Bix(t) and f ix(t)
are the bandwidth and the carrier frequency of ith band at
time t, respectively. Obviously, the computation of the relevant
Fourier coefficients Dm[l] will not change.

To comply with CR requirements, the band parameters
Bix(t) and f ix(t) vary with time allowing dynamic adaptation
to the environment. Moreover, in Section IV-B it was shown
that the best practical sampling strategy consists of a random
selection of a group of bands. This strategy enhances the
ability to dynamically adapt the bands to vacant frequencies
and best fits our cognitive system.

This approach leads to two main advantages. First, since
we only use the received bands to transmit, the entire power
is concentrated in them. Therefore, the SNR in the sam-
pled bands is improved. Second, this technique allows for
a dynamic form of the transmitted signal spectrum, where
only a small portion of the whole bandwidth is used at each
transmission. In the following section we demonstrate how
sub-Nyquist in range is exploited in order to adapt cognition
while improving SNR.

VI. SOFTWARE AND HARDWARE SIMULATIONS

In this section, we examine the performance of Fourier
domain RDA sub-Nyquist sampling for both the range and
azimuth axes using simulated and real SAR data. We compare
our methods to conventional RDA with full Nyquist samples.
In addition, we present our hardware prototype and demon-
strate the advantages of the proposed cognitive SAR in terms
of SNR.

A. Simulated Data

In order to examine our methods, we generated SAR raw
data of two different scenes: a spatially sparse scene and an
image which is sparse under the Daubechies-4 wavelet basis.
The data was generated from real SAR images, using the
model in (1) where the reflectivity map was taken as the
original image, namely, each pixel in the image is treated as
a point reflector, σ(r) = I(r).

In the first simulation we examined range subsampling,
where the scene includes a sea with several vessels. Since
there is nearly no back reflection from the water surface,
large areas in the scene have almost no reflectivity, rendering

the image spatially sparse. The number of transmitted pulses
is P = 1200 and the rest of the system parameters are
described in Table III. We processed the image using only
120 Fourier coefficients from each received signal, instead
of the FsT = 500 which are required in order to satisfy
RDA with αos = 2. We compared conventional Range-Doppler
processing with full samples, to Algorithm 2. The algorithm
parameters are: β = 0.9, λ = 1000, λ̄ = 1000, Lf = 1 and
Ψ is taken as the identity transform. Figure 11(a) depicts
the scene processed with conventional RDA. Figure 11 (b)
shows the result of our sub-Nyquist sampling and processing
approach using Algorithm 2. Our CS algorithm outperforms
conventional RDA with only 24% of the coefficients required
in conventional RDA. The reconstructed image is sharper
due to the attenuation of PSF sidelobes caused by the soft
thresholding operation (30).

In the second simulation we examined only azimuth sub-
sampling and demonstrated the reduced time on scene con-
cept using the same system parameters as in the previous
simulation, with full Nyquist sampling in range. The image
includes two islands, and is not spatially sparse. Thus, we
used the Daubechies-4 wavelet transform as the sparsifying
basis. The PRF is dictated by the Nyquist theorem and should
be higher than 25 KHz for la = 6 m. Thus, for a PRF of
30 KHz, the number of required pulses for a CPI of 20 msec
is P = 600. Figure 12(a) shows the resulting image using
conventional RDA with full Nyquist samples. In the second
experiment we processed the data with Algorithm 1 were only
300 random pulses were chosen, instead of the required 600.
Following the reduced time on scene concept we exploit the
other 300 pulses in order to catch a wider part of the original
scene, which means that using the same number of pulses
we doubled the area of the captured image. The algorithm
parameters are: β = 0.8, λ = 800, λ̄ = 800, Lf = 1. The
result is shown in Fig. 12(b). It can seen that using the same
amount of pulses, our CS algorithm achieves results which are
equivalent in terms of quality to the conventional RDA but the
coverage is two times the original area. This result proves the
concept of reduced time-on-scene.

B. Real Data

To further test the performance of our method and to con-
firm our model, we conducted simulations on the RADARSAT-
1 raw data collected on June 16, 2002, in ascending or-
bit #34522. The illuminated target is Richmond, Vancouver,
Canada. The related key parameters of RADARSAT-1 system
can be found in [4]. In this simulation we prove the feasibility
of our two-dimensional sub-Nyquist SAR system.

We simulated two geographically consecutive scenes. The
reference image which was taken from an Electro-Optic (EO)
satellite is shown in Fig. 13(a), where the two illuminated
scenes are marked in red boxes. In order to simulate the sub-
Nyquist system we undersampled the original raw data of each
of the scenes. The 3072 × 4096 matrix was undersampled in
both axes. In the range axis we reduced randomly 30% of the
coefficients and in the azimuth direction we selected randomly
70% of the columns, which is equivalent to the omission of
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(b)

Fig. 11: Sub-Nyquist range sampling and recovery compari-
son. (a) Conventional RDA with full Nyquist samples. (b) SAR
FISTA (Algorithm 2), Ψ = I , using 24% of the coefficients
required in conventional RDA.

TABLE III: Simulated SAR system parameters

SAR parameter Value

Carrier frequency – fc 37.5 MHz

Transmitted pule duration – τ 1.67 µs

Chirp rate – Kr 2.25 GHz/msec

Range sampling rate – Fs 11.25 MHz

Sensor velocity – v 75 km/s

Doppler bandwidth 25 KHz

PRF – 1/T 30 KHz

Squint angle 0◦

30% of the pulses. This leads to a 2150 × 2867 reduced
matrix. Then we use Algorithm 1 in order to reconstruct
the images, using the Daubechies-4 wavelet transform as the
sparsifying basis. The algorithm parameters were chosen as
β = 0.9, λ = 0.01, λ̄ = 0.001, Lf = 1 and Ψ is taken as
the Daubechies-4 wavelet transform. The results in Fig. 13
compare the original processing with full Nyquist samples and
the sub-Nyquist recovery method using only 0.72 = 0.49 of
the original samples in each image. It can be readily seen
that despite the missing samples, the detailed images are well
reconstructed. In practice, when we control the transmitted
signal, we can increase the signal’s power at the subsampled
bands and increase the effective SNR for better results, as seen
in the next sub-section.

C. Cognitive Radar on Hardware

In order to demonstrate our cognitive SAR abilities, we now
present a real experiment of our SAR hardware prototype. We
integrate our method into a stand-alone system and show that
such processing is feasible in practice using real hardware.
Our setup includes a custom made sub-Nyquist receiver board
which implements sub-Nyquist Xampling and digital recovery
using Algorithm 1, while the analog input signal (1) was
synthesized using National Instruments (NI) hardware.

The experimental process consists of the following steps.
We begin by using the AWR software, which enables us to
simulate point reflectors with different amplitudes and spatial
distribution.

With the AWR software we simulate the complete radar
scenario, including the pulse transmission and accurate power
loss due to wave propagation in a realistic medium. The
AWR also contains a model of a realistic RF receiver, which
simulates the demodulation of the RF signal to IF frequencies,
and saves the output to a file. However, since AWR is operated
only with stationary radars, in order to simulate SAR signals
we created an equivalent kinematic state. We simulated the
targets with velocity v, but in the opposite direction than the
one that should be to the radar. Our simulation is similar in
some manners to ISAR. In ISAR, the radar is stationary and
the targets are moving. The angular motion of the target with
respect to the radar can be used to form an image of the
moving targets. Differential Doppler shifts of adjacent scatters
on a target are observed and the targets reflectivity function is
obtained through the Doppler frequency spectrum [40].
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(a) (b)

Fig. 12: Reduced time on scene via sub-Nyquist azimuth sampling (range is the vertical axis and azimuth is the horizontal one).
(a) Conventional RDA with full Nyquist samples, 600 pulses. (b) Sub-Nyquist reconstruction of a 2 times wider scene using
600 pulses. The 50% rate reduction enables to transmit the missing pulses to another area. The reconstruction is performed by
SAR FISTA (Algorithm 1), where Ψ is the Daubechies-4 wavelet transform.

Next, the generated raw data is loaded to the AWG module,
which produces an analog signal. This signal is amplified
using the NI 5690 low noise amplifier and then routed to our
radar receiver board, which has 4 parallel input channels. Each
channel samples a different frequency band, in the following
manner: each channel is fed by a local oscillator (LO), which
modulates the desired frequency band of the channel to the
central frequency of a narrow 80 KHz bandwidth band pass
filter (BPF). A fifth LO, common to all 4 channels, modulates
the BPF output to a low frequency band. It is then sampled
with a standard low rate ADC. The LOs are created using three
NI 5781 baseband transceivers, acting as trigger based signal
generators with a constant and known phase, controlled by NI
Flex Rio FPGAs. The AWG also triggers the ADC to sample
250 samples in each sampling cycle, per channel. These
samples are fed into the chassis controller and a MATLAB
function is launched that runs Algorithm 1. Pictures of the
system are shown in Fig.14.

To demonstrate the advantage of our cognitive system in
terms of SNR using hardware, we simulated targets which
construct an ISAR frame of a moving car, which means
that only the car edges can be detected, thus, the image is
spatially sparse and Ψ is selected to be the identity. We
examined 3 scenarios with different SNR: noise free, -10
dB and -20 dB. In each scenario we ran two simulations:
a fully sampled signal, according to that required by RDA,
and a partially sampled signal with only 20% of the coef-
ficients, using our hardware. The algorithm parameters are:
β = 0.85, λ = 0.001, λ̄ = 0.0001, Lf = 25. For every
resulting image, we computed the FSIM index compared to

the original full Nyquist reconstructed image without noise.
Figure 15 compares the results. Due to the power concentration
in the sampled bands which helps increase the effective SNR,
the FSIM is larger in our method.

Next, we compared the quality of two images using FSIM:
the output of traditional processing and the image resulting
from our hardware implementing a cognitive system. The im-
age includes a few single point reflectors which were randomly
located. At every measurement each of the resulting images
was compared to a ground truth noiseless image processed
using conventional RDA. The received signals were corrupted
with additive white Gaussian noise (AWGN) n(t) with power
spectral density N0/2, bandlimited to Bh. The SNR for a
single reflector located at r0 is defined as

SNR =
1
T

∫ T
0
|σ(r0)h(t)|2dt
N0Bh

. (38)

Figure 16 plots the FSIM as a function of SNR. The index
values are in the range of 0 to 1, where 1 indicates perfect sim-
ilarity. Evidently, our cognitive system, with a lower number of
samples, outperforms traditional wideband radar transmission
and processing.

Our experimental prototype proves that the sub-Nyquist
methodology described in this paper is feasible in practice.
The proposed recovery method addresses the problem of low
rate analog sampling, in a way which is feasible with standard
RF hardware. In addition, in terms of SNR, our algorithm
outperforms conventional RDA while using only a portion of
the original samples due to the fact the we concentrated the
energy only in the sampled bands.
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(d) (e)

Fig. 13: Real data simulations using RADARSAT-1 data. (a) A reference electro-optic image with two marked areas (in red).
(b) The first area (North), processed with full Nyquist samples. (c) The first area processed with Algorithm 1 using only 49%
of the original samples, 0.7 rate reduction in each axis. (d) The second area (South), processed with full Nyquist samples. (c)
The second area processed with Algorithm 1 using only 49% of the original samples, 0.7 rate reduction in each axis.
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(b)

Fig. 14: Sub-Nyquist system. (a) Analog front end 4-channel
receiver board. (b) National Instruments (NI) system.

VII. CONCLUSION

We presented a new SAR signal processing algorithm which
is equivalent to RDA and showed that the resulting images
are equivalent to those of conventional processing. The new
algorithm exploits the advantages of RDA without the heavy
interpolation stage. This allows to perform processing at the
Nyquist rate, defined with respect to the effective bandwidth
of the signal, which is impossible when interpolation is
performed in time.

Next, we introduced two-dimensional sub-Nyquist sampling
and recovery methods, which employ the techniques of Xam-
pling. We showed that an image can be reconstructed while
sampling only a portion of its bandwidth and after dropping
a large percentage of the transmitted pulses. The gaps in
time and frequency may be exploited in order to achieve
wider coverage during the same CPI, to increase SNR and
to adapt the transmitted signal to the environment, paving
the way to cognitive SAR. Using simulated and real data
sets, and a Xampling prototype in hardware, we demonstrated
that our system outperforms conventional SAR and can cope
with practical limitations of computational load and limited
bandwidth.
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