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Abstract. In this article, we consider two particular bistatic cases which arise in Synthetic Aper-
ture Radar (SAR) imaging: when the transmitter and receiver are moving in the same direction or
in the opposite direction and with different speeds. In both cases, we classify the forward operator
F as an FIO with fold/blowdown singularities. Next we analyze the normal operator F∗F in both
cases (where F∗ is the L2 adjoint of F). When the transmitter and receiver move in the same di-
rection, we prove that F∗F belongs to a class of distributions associated to two cleanly intersecting
Lagrangians, Ip,l(Λ1,Λ2). When they move in opposite directions, F∗F is a sum of such operators.
In both cases artifacts appear and we show that they are as strong as the bona-fide part of the
image.

Keywords: microlocal analysis, bistatic synthetic aperture radar (SAR) imaging, Fourier integral
operators, fold/cusp singularities

AMS Classification Numbers: 35S30, 35S05, 58J40, 35A27

1. Introduction

Synthetic Aperture Radar (SAR) makes possible high-resolution imaging in a variety of contexts.
Applications include imaging the Earth’s terrain, monitoring forestry bio-mass, aircraft identifica-
tion, etc.

Although it is possible to collect enough data so that SAR images are reliable, it is often not
practical to collect and process large amounts of data, especially when the image is needed in
(almost) real time. Therefore, it may be the case that just a single sweep (instead of multiple
sweeps) over the scene to be imaged is made and image is reconstructed based on this limited data.

It is reasonable to investigate the possibility of obtaining acceptable images using limited data
and also, perhaps more importantly, study what artifacts can be expected when such SAR data
is processed by conventional backprojection methods. Indeed, the results of our work [1] show
that in the case of bistatic SAR, where the transmitter and receiver are moving with equal speed
in opposite directions, there are unavoidable artifacts in the reconstructed image of the Earth’s
surface.

The current work continues on from [1] by analyzing the situation where the transmitter and
receiver are either moving in the same direction or opposite direction and with different speeds.
When the transmitter and receiver are moving in the same direction, we show that the scattering
operator F that models the SAR data is a Fourier Integral Operator (FIO). The canonical relation
CF of F is a Lagrangian submanifold of a product space T ∗X ×T ∗Y and we show that the natural
projections πL : CF → T ∗Y, πR : CF → T ∗X drop rank along a smooth hypersurface Σ1. As a
consequence of this, the image that one obtains using standard backprojection has artifacts which
are just as strong as the bona-fide part of the image. When the transmitter and receiver move in
opposite directions, a similar situation occurs, except that the projections now drop rank over the
union of a pair of smooth hypersurfaces and a similar statement regarding artifacts applies.
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The images including artifacts are analyzed using the calculus of singular FIOs. There is exten-
sive prior literature involving the use of microlocal techniques in the study of generalized Radon
transforms, integral geometry, scattering theory and harmonic analysis [15, 13, 19, 14, 10, 12, 11,
8, 9, 22, 23, 24, 25, 3, 4, 5, 6, 18, 27, 7, 26]. We show that in the case of transmitter and receiver
moving in the same direction, the normal operator F∗F (an operator that plays a central role in the
context of image analysis) has a distribution kernel belonging to the paired Lagrangian distribution
class Ip,l(4, C) where 4 is the identity relation, C is the graph of a simple reflection map and the
orders p, l of the operator are such that genuine scatterers and artifacts belong to the same Sobolev
space. This result is valid even if the transmitter is stationary, for example, when the transmitter
is a fixed radio tower and the receiver is a drone.

When the transmitter and receiver move in opposite directions, the analysis is considerably
more complicated; see Theorem 2.6. As a special case of this result, we prove that choosing a
suitable filtering of the data (Statements 1 and 3 of Theorem 2.6) shows that the canonical relation
that causes the artifacts is the graph of an involution. On the other hand filtering the data as
in Statement 2 of Theorem 2.6 shows that the backprojection adds two artifacts and the normal
operator G∗G is a sum of operators belonging to Ip,l classes (where the forward operator for this
case is denoted G). In all these situations, we show that the additional artifacts are just as strong as
the bona-fide part of the image. Finally, one can consider beam forming, in which certain portions
of the ground are selectively illuminated; see Theorem 5.8. In this case, we show that the normal
operator G∗G still belongs to Ip,l(∆, C) but C is a two-sided fold canonical relation.

2. Statements of the main results

2.1. The linearized scattering model. For simplicity, we assume that both the transmitter and
receiver are at the same height h > 0 above the ground at all times and that the transmitter and
receiver move at constant but different speeds along a line parallel to the x axis. Let

γT (s) = (αs, 0, h) γR(s) = (s, 0, h) (2.1)

for s ∈ (0,∞) be the trajectories of the transmitter and receiver respectively.
The case α = −1 corresponds to the common midpoint problem which was fully analyzed in [1].

Therefore we will assume α 6= −1. We also assume α 6= 1 since this corresponds to the monostatic
case which has also been fully analyzed in earlier works; [22, 3, 4].

The linearized model for the scattered signal we will use in this article is∫
e
−iω

(
t− 1

c0
R(s,x)

)
a0(s, x, ω)V (x)dxdω

for (s, t) ∈ (0,∞) × (0,∞), where V (x) = V (x1, x2) is the function modeling the object on the
ground, and

R(s, x) = ‖γT (s)− x‖+ ‖x− γR(s)‖
is the bistatic distance–the sum of the distance from the transmitter to the scatterer and from the
scatterer to the receiver, c0 is the speed of electromagnetic wave in free-space and the amplitude
term a0 is given by

a0(s, x, ω) =
ω2p(ω)

16π2 ‖γT (s)− x‖ ‖γR(s)− x‖
.

This function includes terms that take into account the transmitted waveform and geometric spread-
ing factors.

From now on, we denote the (s, t) space by Y = (0,∞)2 and the (x1, x2) space by X = R2.
For simplicity, we will assume that c0 = 1. Because the ellipsoidal wavefronts do not meet the

ground for

t <
√

(α− 1)2s2 + 4h2,
2



there is no signal for such t. As we will see, our method cannot image the point on the ground
directly “between” the transmitter and receiver (see the proof of Theorem 2.1 in Section 4). Given
transmitter and receiver positions αs and s respectively, such a point on the ground has coordinates(

(α+1)s
2 , 0

)
. Note that this point on the x-axis corresponds to t =

√
(α− 1)2s2 + 4h2. For these

two reasons, we multiply a0 by a cutoff function f that is zero in a neighborhood of{
(s, t) : s > 0, 0 < t ≤

√
(α− 1)2s2 + 4h2

}
.

In addition, to be able to compose our forward operator and its adjoint, we further assume that
f is compactly supported and equal to 1 in a neighborhood of a suitably large compact subset of

{(s, t) : s > 0,
√

(α− 1)2s2 + 4h2 < t <∞}.

We let f · a0 = a, and this gives us the data

FV (s, t) :=

∫
e−iω(t−‖x−γT (s)‖−‖x−γR(s)‖)a(s, t, x, ω)V (x)dxdω. (2.2)

We require additional cutoffs for our analysis to work for the case of α < 0 (see Remarks 2.5 and
5.3).

Throughout the article we use the following notation

A = A(s, x) = ‖x− γT (s)‖ =
√

(x1 − αs)2 + x2
2 + h2

B = B(s, x) = ‖x− γR(s)‖ =
√

(x1 − s)2 + x2
2 + h2.

(2.3)

and we define the ellipse

E(s, t) =
{
x ∈ R2 : A(s, x) +B(s, x) = t

}
(2.4)

We assume that the amplitude function a ∈ S2, that is, it satisfies the following estimate: For
every compact K ⊂ Y ×X and for every non-negative integer δ and for every 2-index β = (β1, β2)
and λ, there is a constant c such that

|∂δω∂β1s ∂
β2
t ∂

λ
xa(s, t, x, ω)| ≤ c(1 + |ω|)2−δ. (2.5)

This assumption is satisfied if the transmitted waveform from the antenna is approximately a Dirac
delta distribution, and this is a standard assumption in the field.

2.2. Transmitter and receiver moving in the same direction: α ≥ 0. The case α ≥ 0
corresponds to the situation when the transmitter and receiver are traveling in the same direction
or when the transmitter is stationary (α = 0). For α ≥ 0, we refer to the forward operator by F .
We show that for the case α ≥ 0, the operator F in (2.2) is a Fourier integral operator (FIO) of
order 3

2 and study the properties of the natural projection maps from the canonical relation of F .
We have the following results.

Theorem 2.1. Let F be the operator in (2.2) for α ≥ 0.

(1) F is an FIO of order 3/2.
3



(2) The canonical relation CF ⊂ T ∗Y \ 0× T ∗X \ 0 associated to F is given by

CF =

{(
s, t,−ω

(
x1 − αs
A

α+
x1 − s
B

)
, ω;

x1, x2, ω

(
x1 − αs
A

+
x1 − s
B

)
, ω
(x2

A
+
x2

B

))
: ω 6= 0, t = A+B

}
.

(2.6)

where A = A(s, x) and B = B(s, x) are defined in (2.3). Furthermore, (s, x1, x2, ω) is a
global parameterization of CF .

(3) Denote the left and right projections from CF to T ∗Y \ 0 and T ∗X \ 0 by πL and πR
respectively. Then πL and πR drop rank simply by one on the set

Σ1 = {(s, x1, x2, ω) ∈ CF : x2 = 0} . (2.7)

(4) πL has a fold singularity along Σ1 and πR has a blowdown singularity along Σ1.

We next analyze the imaging operator F∗F .

Theorem 2.2. Let F be as in Theorem 2.1. Then F∗F ∈ I3,0(∆, C1), where

C1 = {(x1, x2, ξ1, ξ2;x1,−x2, ξ1,−ξ2) : (x, ξ) ∈ T ∗X \ 0} (2.8)

which is the graph of χ1(x, ξ) = (x1,−x2, ξ1,−ξ2).

Remark 2.3. Since F∗F ∈ I3,0(∆, C1), using the properties of the Ip,l classes [16], we have that
microlocally away from C1, F∗F is in I3(∆\C1) and microlocally away from ∆, F∗F ∈ I3(C1 \∆).
This means that F∗F has the same order on both ∆ and C1 which implies that the artifacts caused
by C1 have the same order as the singularities in V that cause them.

2.3. Transmitter and receiver moving in opposite directions: α < 0. When α < 0, the
transmitter and receiver travel away from each other, and we refer to the forward operator by G.

2.3.1. Further preliminary modifications of the scattered data. In the case when α < 0, we further
modify the operator FV considered in Section 2.1.

Our method cannot image a neighborhood of two points on the ground for a given transmitter
and receiver positions in addition to the points muted by the cutoff function f in Section 2.1.
Therefore we modify or pre-process the receiver data further such that the contribution to it from
a neighborhood of these two points is 0. The two points on the x1-axis that we would like to avoid
are of the form

(
x±1 , 0

)
, where

x+
1 =

2αs

α+ 1
+

√
−α(α− 1)2

(α+ 1)2
s2 − h2, (2.9)

x−1 =
2αs

α+ 1
−

√
−α(α− 1)2

(α+ 1)2
s2 − h2 (2.10)

as explained in Remark 2.5. We define a smooth mute function g(s, t) that is identically 0 if the
ellipse E(s, t) is near one of the points (x±1 , 0); for each s, the corresponding values of t are

t±s = A
(
s, (x±1 , 0)

)
+B

(
s, (x±1 , 0)

)
(2.11)

where A and B are given by (2.3). The points t±s are given explicitly in Appendix B.
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With the function g, we modify F in (2.2) by replacing a by g ·a and call it a again. Throughout
this section, corresponding to the case α < 0, we will designate the operator as G. That is, we have

GV (s, t) :=

∫
e−iω(t−‖x−γT (s)‖−‖x−γR(s)‖)a(s, t, x, ω)V (x)dxdω, (2.12)

where a takes into account the cutoff functions f in Section 2.1 and the function g defined in the
last paragraph.

Theorem 2.4. Let G be the operator given in (2.12) for α < 0. Then

(1) G is an FIO of order 3
2

(2) The canonical relation CG associated to G is given by (2.6) with global parameterization
(s, x1, x2, ω).

(3) The left and right projections πL and πR respectively from CG drop rank simply by one on
the set Σ = Σ1 ∪ Σ2 where Σ1 is given by (2.7) and

Σ2 =

{
(s, x, ω) ∈ CG :

α

A2
+

1

B2
= 0, x2 6= 0

}
(2.13)

=

{
(s, x, ω) ∈ CG :

(
x1 −

2αs

α+ 1

)2

+ x2
2 = −αs2 (α− 1)2

(α+ 1)2
− h2, x2 6= 0

}
(2.14)

(4) πL has a fold singularity along Σ.
(5) πR has a blowdown singularity along Σ1 and a fold singularity along Σ2.

For convenience, we denote, for each s, the projection of the part of Σ2 above s to R2 (the
projection to the base of πR

(
Σ2

∣∣
s

)
) by Σ2,X(s), and this is the circle described in (2.14) and in

Appendix B. It can be written

Σ2,X(s) =

{
x :

α

A2(s, x)
+

1

B2(s, x)
= 0, x2 6= 0

}
. (2.15)

Remark 2.5. From Equation (2.14) we have that Σ2,X(s) is a circle of radius
√
−αs2 (α−1)2

(α+1)2
− h2

and centered at (2αs/(α+ 1), 0).
Now we can explain why we need to cutoff the data for ellipses near the two points given by

(2.9)-(2.10). Since πR(Σ1) intersects πR(Σ2) above these two points, πR drops rank by two above
these points. So, we mute data near (s, t±s ) given by (2.11). We will precisely describe this mute,
g in Remark 5.3.

We now analyze the imaging operator G∗G. Unlike the case α ≥ 0, this case is more complicated
and we consider several restricted transforms.

Theorem 2.6. Let −1 6= α ≤ 0 and G be the operator in (2.12) and let

s0 =
h(α+ 1)√
−α(α− 1)

(2.16)

Then the following hold:

(1) Let O1 = {(s, t) : 0 < s < s0 and 0 < t < ∞} and let r1 be a smooth cutoff function that
is compactly supported in O1. Consider the operator G defined in (2.12) with the amplitude
function a replaced by r1 · a. Then G∗G ∈ I3,0(∆, C1) where C1 is defined in (2.8).

(2) Let O2 = {(s, t) : s0 < s < ∞ and t−s < t < t+s } where t±s is defined in (2.11). Let
r2 be a smooth cutoff function and compactly supported in O2. Consider the operator G
defined in (2.12) with the amplitude function a replaced by r2 ·a. Then G∗G ∈ I3,0(∆, C1) +
I3,0(∆, C2) + I3,0(C1, C2) where C2 is a two-sided fold given by (5.1).
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(3) Let O3 = {(s, t) : s0 < s < ∞ and t < t−s or t > t+s } with t±s defined in (2.11). Let r3

be a smooth cutoff function compactly supported in O3. Consider the operator G defined in
(2.12) with the amplitude function a replaced by r3 · a. Then G∗G ∈ I3,0(∆, C1).

Remark 2.7. Using the properties of the Ip,l classes for case (2) of the theorem,

G∗G ∈ I3,0(∆, C1) + I3,0(∆, C2) + I3,0(C1, C2)

implies that singularities in the reconstruction will show up because of C1 (reflection in the x1 axis)
and because of C2 (a 2-sided fold). Furthermore, the added artifacts will have the same order as
the singularities in V that cause them.

3. Preliminaries: Singularities and Ip,l classes

Here we introduce the classes of distributions and singular FIO we will use to analyze the forward
operators F and G and the normal operators F∗F and G∗G.

Definition 3.1. [11] Let M and N be manifolds of dimension n and let f : M → N be C∞. Define
Σ = {m ∈M : det(df)m = 0}.

(1) f drops rank by one simply on Σ if for each m0 ∈ Σ,
rank (df)m0 = n− 1 and d(det(df)m0) 6= 0.

(2) f has a Whitney fold along Σ if f is a local diffeomorphism away from Σ and f drops rank
by one simply on Σ, so that Σ is a smooth hypersurface and ker (df)m0 6⊂ Tm0Σ for every
m0 ∈ Σ.

(3) f is a blow-down along Σ if f is a local diffeomorphism away from Σ and f drops rank by
one simply on Σ, so that Σ is a smooth hypersurface and ker(df)m0 ⊂ Tm0(Σ) for every
m0 ∈ Σ.

Definition 3.2 ([19]). A smooth canonical relation C for which both projections πL and πR have
only (Whitney) fold singularities, is called a two-sided fold or a folding canonical relation.

This notion was first introduced by Melrose and Taylor [19], who showed the existence of a
normal form in T ∗Rn × T ∗Rn.

Theorem 3.3 ([19]). If dim X = n dim Y = n and C ⊂ (T ∗X \ 0) × (T ∗Y \ 0) is a two-
sided fold, then microlocally there are homogeneous canonical transformations, χ1 : T ∗X → T ∗Rn
and χ2 : T ∗Y → T ∗Rn, such that (χ1 × χ2)(C) ⊆ C0, near ξ2 6= 0 where, C0 = N∗{x2 − y2 =
(x1 − y1)3; xi = yi, 3 ≤ i ≤ n}.

We now define Ip,l classes. They were first introduced by Melrose and Uhlmann [20], Guillemin
and Uhlmann [16] and Greenleaf and Uhlmann [12] and they have been used in the study of SAR
imaging [22, 3, 4, 18, 1].

Definition 3.4. Two submanifolds M and N intersect cleanly if M ∩N is a smooth submanifold
and T (M ∩N) = TM ∩ TN .

Consider two spaces X and Y and let Λ0 and Λ1 and Λ̃0 and Λ̃1 be Lagrangian submanifolds of
the product space T ∗X×T ∗Y . If they intersect cleanly, (Λ̃0, Λ̃1) and (Λ0,Λ1) are equivalent in the

sense that there is, microlocally, a canonical transformation χ which maps (Λ0,Λ1) into (Λ̃0, Λ̃1)

and χ(Λ0 ∩ Λ1) = (Λ̃0 ∩ Λ̃1). This leads us to the following model case.

Example. Let Λ̃0 = ∆T ∗Rn = {(x, ξ;x, ξ) : x ∈ Rn, ξ ∈ Rn \ 0} be the diagonal in T ∗Rn × T ∗Rn
and let Λ̃1 = {(x′, xn, ξ′, 0;x′, yn, ξ

′, 0) : x′ ∈ Rn−1, ξ′ ∈ Rn−1 \ 0}. Then, Λ̃0 intersects Λ̃1 cleanly
in codimension 1.

Now we define the class of product-type symbols Sp,l(m,n, k).
6



Definition 3.5. Sp,l(m,n, k) is the set of all functions a(z; ξ, σ) ∈ C∞(Rm × Rn \ 0 × Rk) such
that for every K ⊂ Rm and every α ∈ Zm+ , β ∈ Zn+, δ ∈ Zk+ there is cK,α,β such that

|∂αz ∂
β
ξ ∂

δ
σa(z, ξ, σ)| ≤ cK,α,β(1 + |ξ|)p−|β|(1 + |σ|)l−|δ|

for all (z, ξ, τ) ∈ K × Rn \ 0× Rk.

Since any two sets of cleanly intersecting Lagrangians are equivalent, we first define Ip,l classes
for the case in Example 3.

Definition 3.6. [16] Let Ip,l(Λ̃0, Λ̃1) be the set of all distributions u such that u = u1 + u2 with
u1 ∈ C∞0 and

u2(x, y) =

∫
ei((x

′−y′)·ξ′+(xn−yn−s)·ξn+s·σ)a(x, y, s; ξ, σ)dξdσds

with a ∈ Sp′,l′ where p′ = p− n
2 + 1

2 and l′ = l − 1
2 .

This allows us to define the Ip,l(Λ0,Λ1) class for any two cleanly intersecting Lagrangians in
codimension 1 using the microlocal equivalence with the case in Example 3.

Definition 3.7. [16] Let Ip,l(Λ0,Λ1) be the set of all distributions u such that u = u1 + u2 +
∑
vi

where u1 ∈ Ip+l(Λ0 \Λ1), u2 ∈ Ip(Λ1 \Λ0), the sum
∑
vi is locally finite and vi = Awi where A is a

zero order FIO associated to χ−1, the canonical transformation from above, and wi ∈ Ip,l(Λ̃0, Λ̃1).

This class of distributions is invariant under FIOs associated to canonical transformations which
map the pair (Λ0,Λ1) to itself, whilst also preserving the intersection. By definition, F ∈ Ip,l(Λ0,Λ1)
if its Schwartz kernel belongs to Ip,l(Λ0,Λ1). If F ∈ Ip,l(Λ0,Λ1) then F ∈ Ip+l(Λ0 \ Λ1) and
F ∈ Ip(Λ1 \ Λ0) [16]. Here by F ∈ Ip+l(Λ0 \ Λ1), we mean that the Schwartz kernel of F belongs
to Ip+l(Λ0) microlocally away from Λ1.

To show that a distribution belongs to Ip,l class we use the iterated regularity property:

Theorem 3.8 ([12, Proposition 1.35]). If u ∈ D′(X × Y ) then u ∈ Ip,l(Λ0,Λ1) if there is an
s0 ∈ R such that for all first order pseudodifferential operators Pi with principal symbols vanishing
on Λ0 ∪ Λ1, we have P1P2 . . . Pru ∈ Hs0

loc.

In section 5, we will use the following theorem.

Theorem 3.9 ([3, 21]). If F is a FIO of order m whose canonical relation is a two-sided fold then

F ∗F ∈ I2m,0(∆, C̃) where C̃ is another two-sided fold.

4. Analysis of the operator F and the imaging operator F∗F for α ≥ 0

In this section, we prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1. We first prove that

ϕ := −ω
(
t−
√

(x1 − αs)2 + x2
2 + h2 −

√
(x1 − s)2 + x2

2 + h2

)
is a non-degenerate phase function. We have that ϕ is a phase function because ∇xϕ 6= 0 at
points where the amplitude of the operator F is elliptic. The differential ∇xϕ vanishes at a point

on the ground directly “between” the source and receiver and this point is given by
(

(α+1)s
2 , 0

)
.

However, in a neighborhood of such points the amplitude a vanishes due to the cutoff function f
in the definition of F given in (2.2). Also we have that ∇s,tϕ is nowhere 0 since ω 6= 0. The same
reason that ∇xϕ is non-vanishing at points where the amplitude a is elliptic also gives that ϕ is

7



non-degenerate. Since a satisfies an amplitude estimate, F is an FIO [2]. Finally since a is of order
2, the order of the FIO is 3/2 [2, Definition 3.2.2]. By definition [17, Equation (3.1.2)]

CF =
{

(s, t, ∂s,tϕ(x, s, t, ω)); (x,−∂xϕ(x, s, t)); ∂ωϕ(x, s, t, ω) = 0
}
.

This establishes (2.6). Furthermore, it is easy to see that (x1, x2, s, ω) is a global parametrization
of CF .

Now we prove the claims about the canonical left and right projections from CF , the final parts
of Theorem 2.1. In the parameterization of CF , we have

πL(x1, x2, s, ω) =

(
s,A+B,−

(
x1 − αs
A

α+
x1 − s
B

)
ω,−ω

)
and the derivative is

(dπL) =


0 0 1 0

x1−αs
A + x1−s

B
x2

A + x2

B ∗ 0

−ω
(
x2
2+h

2

A3 α+
x2
2+h

2

B3

)
ω
(
α(x1−αs)x2

A3 + (x1−s)x2

B3

)
∗ ∗

0 0 0 −1

 .

Then

det (dπL) = −ωx2

(
α

A2
+

1

B2

)(
1 +

(γT − x) · (γR − x)

AB

)
. (4.1)

The third term would be zero when the unit vectors (γT (s)− x)/A and (γR(s)− x)/B point in
opposite directions, but this cannot happen since the transmitter and receiver are above the plane
of the Earth. Also since α > 0,

(
α
A2 + 1

B2

)
6= 0. Hence, this determinant vanishes to first order

when x2 = 0. This corresponds to Σ1 given in (2.7).
On Σ1 the kernel of (dπL) is spanned by ∂

∂x2
6⊂ TΣ1. So πL has a fold singularity along Σ1.

Similarly, we have,

πR(x1, x2, s, ω) =

(
x1, x2,−

(
x1 − αs
A

+
x1 − s
B

)
ω,−

(x2

A
+
x2

B

)
ω

)
.

Then

(dπR) =


1 0 0 0
0 1 0 0

∗ ∗ ω(
x22+h2

A3 α+
x22+h2

B3 ) −(x1−αsA + x1−s
B )

∗ ∗ −ω( (x1−αs)x2
A3 α+ (x1−s)x2

B3 ) −(x2A + x2
B )


has the same determinant as (dπL).Therefore πR drops rank simply by one on Σ1. On Σ1, the kernel
of πR is spanned by ∂

∂ω and ∂
∂s which are tangent to Σ1. Thus πR has a blowdown singularity along

Σ1.
�

Next we analyze the imaging operator F∗F . We have the following integral representation for
F∗F :

F∗FV (x) =

∫
eiφ̃(x,s,t,ω,ω̃,y)a(s, t, x, ω)a(s, t, y, ω̃)V (y)dsdtdωdω̃dy,

where

φ̃ =
(
ω (t− (‖x− γT (s)‖+ ‖x− γR(s)‖))
− ω̃ (t− (‖y − γT (s)‖+ ‖y − γR(s)‖))

)
8



After an application of the method of stationary phase in t and ω̃, the Schwartz kernel of this
operator becomes

K(x, y) =

∫
eiΦ(y,s,x,ω)ã(y, s, x, ω) dsdω. (4.2)

where
Φ(y, s, x, ω) =ω

(
‖y − γT (s)‖+ ‖y − γR(s)‖
− (‖x− γT (s)‖+ ‖x− γR(s)‖)

)
.

(4.3)

Note that ã ∈ S4 since we have assumed that a ∈ S2.

Proposition 4.1. Let α ≥ 0. The wavefront set of the kernel K of F∗F satisfies

WF ′(K) ⊂ ∆ ∪ C1,

where ∆ is the diagonal in T ∗X×T ∗X, and C1 is given by (2.8). We have that ∆ and C1 intersect
cleanly in codimension 2 in ∆ or C1.

Proof. Let (s, t, σ, τ ; y, η) ∈ CF . Then we have

t =
√

(y1 − αs)2 + y2
2 + h2 +

√
(y1 − s)2 + y2

2 + h2

σ = τ

(
y1 − αs√

(y1 − αs)2 + y2
2 + h2

α+
y1 − s√

(y1 − s)2 + y2
2 + h2

)

η1 = τ

(
y1 − αs√

(y1 − αs)2 + y2
2 + h2

+
y1 − s√

(y1 − s)2 + y2
2 + h2

)

η2 = τ

(
y2√

(y1 − αs)2 + y2
2 + h2

+
y2√

(y1 − s)2 + y2
2 + h2

)
(4.4)

and (x, ξ; s, t, σ, τ) ∈ Ct implies

t =
√

(x1 − αs)2 + x2
2 + h2 +

√
(x1 − s)2 + x2

2 + h2

σ = τ

(
x1 − αs√

(x1 − αs)2 + x2
2 + h2

α+
x1 − s√

(x1 − s)2 + x2
2 + h2

)

ξ1 = τ

(
x1 − αs√

(x1 − αs)2 + x2
2 + h2

+
x1 − s√

(x1 − s)2 + x2
2 + h2

)
(4.5)

ξ2 = τ

(
x2√

(x1 − αs)2 + x2
2 + h2

+
x2√

(x1 − s)2 + x2
2 + h2

)
From the first two relations in (4.4) and (4.5), we have√

(y1 − αs)2 + y2
2 + h2 +

√
(y1 − s)2 + y2

2 + h2

=
√

(x1 − αs)2 + x2
2 + h2 +

√
(x1 − s)2 + x2

2 + h2

(4.6)

and
y1 − αs√

(y1 − αs)2 + y2
2 + h2

α+
y1 − s√

(y1 − s)2 + y2
2 + h2

=
x1 − αs√

(x1 − αs)2 + x2
2 + h2

α+
x1 − s√

(x1 − s)2 + x2
2 + h2

.
(4.7)
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We will use prolate spheroidal coordinates with foci γR(s) and γT (s) to solve for x and y. We
let

x1 = 1+α
2 s+ 1−α

2 s cosh ρ cosφ y1 = 1+α
2 s+ 1−α

2 s cosh ρ′ cosφ′

x2 = 1−α
2 s sinh ρ sinφ cos θ y2 = 1−α

2 s sinh ρ′ sinφ′ cos θ′

x3 = h+ 1−α
2 s sinh ρ sinφ sin θ y3 = h+ 1−α

2 s sinh ρ′ sinφ′ sin θ′
(4.8)

with ρ and ρ′ positive, φ and φ′ in the interval [0, π] and θ and θ′ in [0, 2π]. In this case x3 = 0 and
we use it to solve for h. Hence

A2 = (x1 − αs)2 + x2
2 + h2 =

(1− α)2

4
s2(cosh ρ+ cosφ)2

and

B2 = (x1 − s)2 + x2
2 + h2 =

(1− α)2

4
s2(cosh ρ− cosφ)2.

Noting that s > 0 and cosh ρ ± cosφ > 0, the first relation given by (4.6) in these coordinates
becomes

s(cosh ρ− cosφ) + s(cosh ρ+ cosφ) = s(cosh ρ′ − cosφ′) + s(cosh ρ′ + cosφ′)

from which we get

cosh ρ = cosh ρ′ ⇒ ρ = ρ′.

The second relation, given by (4.7), becomes

cosh ρ cosφ− 1

cosh ρ− cosφ
+ α

cosh ρ cosφ+ 1

cosh ρ+ cosφ
=

cosh ρ cosφ′ − 1

cosh ρ− cosφ′
+ α

cosh ρ cosφ′ + 1

cosh ρ+ cosφ′

After simplification we get

(cosφ− cosφ′)[(α+ 1)(cosh2 ρ+ cosφ cosφ′)

− (α− 1) cosh ρ(cosφ+ cosφ′)] = 0
(4.9)

which implies either that

cosφ = cosφ′ which implies φ = φ′ (4.10)

(since we can assume φ ∈ [π, 2π] for points on the ground) or that

(α+ 1)(cosh2 ρ+ cosφ cosφ′)− (α− 1) cosh ρ(cosφ+ cosφ′) = 0 =
α

AÃ
+

1

BB̃
(4.11)

where Ã and B̃ are defined as in (2.3) but evaluated at (s, y) and the third term in the equality is
equivalent to the first term.

We consider Conditions (4.10) and (4.11) separately. First, assume Condition (4.10) holds. Then
we have φ = φ′. In this case,

cos θ = ±

√
1− h2

s2 sinh2 ρ sin2 φ
= ± cos θ′

and note that x3 = 0 implies that sinφ 6= 0. We also remark that it is enough to consider cos θ =
cos θ′ as no additional relations are introduced by considering cos θ = − cos θ′ over the relations we
now address. Now we go back to x and y coordinates. If θ = θ′ then x1 = y1, x2 = y2, ξi = ηi
for i = 1, 2. In this case, the composition, CtF ◦ CF ⊂ ∆ = {(x, ξ;x, ξ)}. If θ′ = π − θ then
x1 = y1, −x2 = y2, ξ1 = η1,−ξ2 = η2. For these points the composition, CtF ◦ CF is a subset of C1

in (2.8). Note that (4.11) has no solutions for α ≥ 0. The statements about clean intersection are
the same as the one given in [1]. This concludes the proof of Proposition 4.1.

�
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Proof of Theorem 2.2. We will use the iterated regularity method (Theorem 3.8) to show that the
kernel of F∗F ∈ I3,0(∆, C1). We consider the generators of the ideal of functions that vanish on
∆ ∪ C1 [3]. These are given by

p̃1 = x1 − y1, p̃2 = x2
2 − y2

2, p̃3 = ξ1 − η1,

p̃4 = (x2 − y2)(ξ2 + η2), p̃5 = (x2 + y2)(ξ2 − η2),

p̃6 = ξ2
2 − η2

2.

(4.12)

We show in Appendix A that each p̃i can be expressed as sums of products of ∂ωΦ and ∂sΦ with
smooth functions. Let pi = qip̃i, for 1 ≤ i ≤ 6, where q1, q2 are homogeneous of degree 1 in (ξ, η),
q3, q4 and q5 are homogeneous of degree 0 in (ξ, η) and q6 is homogeneous of degree −1 in (ξ, η). Let
Pi be pseudodifferential operators with principal symbols pi for 1 ≤ i ≤ 6. The p̃i and arguments
using iterated regularity are similar to those used in [3, Thm. 1.6] and in [18, Thm. 4.3].

We use the same arguments as in [1] to show that the orders p, l from Ip,l(∆, C1) are p = 3 and
l = 0. �

5. Analysis of the forward operator G and the imaging operator G∗G for α < 0

In this section, we analyze the operator G in (2.12). In [1] we analyzed the case α = −1. For the
case with α < 0, we make another simplification:

Assume α < −1.

If α ∈ (−1, 0), then we can reduce it to the case α < −1 by using the diffeomorphisms (x1, x2) 7→
(−x1, x2) and (s, t) 7→ (s/|α|, t).

We first prove Theorem 2.4.

Proof of Theorem 2.4. In the proof of this theorem, most of the statements are already proved in
Theorem 2.1. We just prove the statements regarding the properties of the projection maps πL and
πR. Recall from the proof of Theorem 2.1 that

dπL =


0 0 1 0

x1−αs
A + x1−s

B
x2
A + x2

B ∗ 0

−ω
(
x22+h2

A3 α+
x22+h2

B3

)
ω
(
α(x1−αs)x2

A3 + (x1−s)x2
B3

)
∗ ∗

0 0 0 1


and

det dπL = ωx2

(
α

A2
+

1

B2

)(
1 +

(γT − x) · (γR − x)

AB

)
Clearly this determinant drops rank when the first term, x2 = 0. This corresponds to Σ1 given

by (2.7).
The determinant also drops rank when the second term is zero, which can occur when α < 0;

this corresponds to Σ2 given by (2.13). Note that πL drops rank by 2 at the intersection points
of Σ1 and Σ2 (where x2 = 0) but we exclude them using the cutoff function g described preceding
(2.11).

On Σ2, using the first, second, and fourth row of dπL, the kernel is ∂
∂x1
−

x1−αs
A

+
x1−s
B

x2( 1
A

+ 1
B

)
∂
∂x2

which

applied to Σ2 gives us 2s(α−1)

(α+1)( 1
A

+ 1
B

)
( αA −

1
B ). We have that s 6= 0 and α + 1 6= 0. If α

A −
1
B = 0

then using α
A2 + 1

B2 = 0 we get α(α+1)
A2 = 0 which is a contradiction. Thus ker (dπL) 6⊂ TΣ2 which

implies that πL has a fold singularity along Σ2.

Similarly,
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dπR =


1 0 0 0
0 1 0 0

∗ ∗ −ω(
x22+h2

A3 α+
x22+h2

B3 ) (x1−αsA + x1−s
B )

∗ ∗ ω( (x1−αs)x2
A3 α+ (x1−s)x2

B3 ) (x2A + x2
B )


has the same determinant up to sign and so πR drops rank by one on Σ. On Σ2, using the last row

of dπR, the kernel is ∂
∂s −ω

x1−αs
A3 α+

x1−s
B3

1
A

+ 1
B

∂
∂ω which applied to Σ2 gives 2α(s− 2x1

α+1). If s = 2x1
α+1 then

from α
A2 + 1

B2 = 0 we obtain s2(α−1
2 )2+x2

2+h2 = 0 which is a contradiction. Hence ker (dπR) 6⊂ TΣ2

which implies that πR has a fold singularity along Σ2 as well. This completes the proof of Theorem
2.4. �

Proposition 5.1. For α < 0, the wavefront set of the kernel K of G∗G satisfies,

WF ′(K) ⊂ ∆ ∪ C1 ∪ C2,

where ∆ is the diagonal in T ∗X × T ∗X, C1 is given by (2.8) and C2 is defined as

C2 =
{

(x, ξ; y, ξ′) : ∃(s, t), (x, ξ) ∈ N∗(E(s, t)), (y, ξ′) ∈ N∗(E(s, t)),

α

AÃ
+

1

BB̃
= 0, (x2, y2) 6= (0, 0)

}
,

(5.1)

where A = A(s, x) and Ã = A(s, y), B = B(s, x) and B̃ = B(s, y) and E(s, t) is given by (2.4). Fur-
thermore, ∆ and C1 intersect cleanly in codimension 2, ∆ and C2 intersect cleanly in codimension
1, C2 and C1 intersect cleanly in codimension 1, and ∆ ∩ C1 ∩ C2 = ∅.

Proof. In fact, this proposition is already proved in Proposition 4.1. Here, unlike the situation in
Proposition 4.1, there is a nontrivial contribution to the wavefront of the composition from (4.11).
Hence for α < 0, we have that

WF ′(K) ⊂ ∆ ∪ C1 ∪ C2,

To show no covector in C2 has x2 = 0 = y2, one uses (4.11) and that x3 = 0 = y3 in (4.8). Finally,
note that ∆∩C1∩C2 = ∅ since we exclude the points of intersection of Σ1 and Σ2 due to the cutoff
function g defined in Section 2.3. One can show that C2 is an immersed conic Lagrangian manifold
that is a two-sided fold using Definition 3.2 and the proof of Theorem 5.7 part (b)).

Using Def. 3.4 and the calculations above, one can also show that these manifolds intersect in
the following ways:

(a) ∆ intersects C1 cleanly in codimension 2,

∆ ∩ C1 = {(x, ξ;x, ξ) ∈ ∆ : x2 = 0 = ξ2} .

A proof is given in [1].
(b) ∆ intersects C2 cleanly in codimension 1,

∆ ∩ C2 =

{
(x, ξ;x, ξ) ∈ ∆ :

α

A2
+

1

B2
= 0

}
= {(x, ξ; y, η) ∈ C2 : x1 = y1, x2 = y2}.

Note that the condition that x1 = y1 in C2 implies x2 = ±y2 and so the condition x2 = y2 does
not increase the codimension of the intersection. Using [19], one can show the intersection is
clean.
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(c) C1 intersects C2 cleanly in codimension 1,

C1 ∩ C2 =

{
(x, ξ; y, η) ∈ C1 :

α

AÃ
+

1

BB̃
= 0

}
.

Using [19], one can show the intersection is clean.
(d) ∆ ∩ C1 ∩ C2 = ∅ since we exclude the points of intersection of Σ1 and Σ2.

This completes the proof of the proposition. �

For the rest of the proof, we focus on C2. Let β =
√
−α, then β > 1. Let (x, ξ, y, ξ′) ∈ C2. then,

by (5.1) there is an (s, t) such that x and y are both in E(s, t) and

βB

A
=

Ã

βB̃

where A, Ã,B, B̃ are given below (5.1). Therefore, if (x, ξ, y, ξ′) ∈ C2 then

∃(s, t) ∈ (0,∞)2, ∃k ∈ (0,∞), x, y ∈ E(s, t)
βB(s, x)

A(s, x)
= k,

βB(s, y)

A(s, y)
=

1

k
. (5.2)

A calculation shows that if k 6= β then

βB(s, x)

A(s, x)
= k ⇔

(
x1 −

β2s(1 + k2)

β2 − k2

)2

+ x2
2 =

β2s2k2(β2 + 1)2

(β2 − k2)2
− h2 (5.3)

If k = β, then βB/A = k is the equation of a vertical line with x1 intercept (1− β2)s/2.

We first use this characterization of C2 to prove Statements (1) and (3) of Theorem 2.6. As
already mentioned, the diagonal relation ∆ and C1 given by (2.8) intersect cleanly in codimension
2 on either submanifold. Hence there is a well-defined Ip,l class associated to ∆ and C1.

5.1. Proof of Statement (1) of Theorem 2.6. Recall from statement (1) of this theorem that
the function r1 is a cutoff function compactly supported in

O1 = {(s, t) : 0 < s < s0 and 0 < t <∞} (5.4)

where s0 (see (2.16)) can be written in terms of β as

s0 :=
h(β2 − 1)

β(β2 + 1)
. (5.5)

We show that for (s, t) ∈ O1, there are no x and y satisfying (5.2). Therefore, C2∩WF ′(K1) = ∅
where K1 is the Schwartz kernel of G∗r1G.

So, assume for some (s, t) ∈ O1 (5.2) holds. Then, the right-hand side of (5.3) can be estimated
by

β2s2k2(β2 + 1)2

(β2 − k2)2
− h2 < h2

(
(β2 − 1)2k2 − (β2 − k2)2

(β2 − k2)2

)
= h2

(
(k2 − 1)(β4 − k2)

(β2 − k2)2

)
.

Since β > 1, if 0 < k ≤ 1, this calculation and (5.3) shows that βB
A = k has no solution. Therefore

there are no solutions to (5.2) if 0 < k ≤ 1. Now assume for some k > 1, βB(s,x)
A(s,x) = k, then for (5.2)

to have a solution that means that there must be a point y ∈ E(s, t) with βB(s,y)
A(s,y) = 1/k. However,

this is impossible since 0 < 1/k ≤ 1. This shows that for (s, t) ∈ O1, there is no solution to (5.2).
Now following the proof of Theorem 2.2, we achieve the result of Statement (1). �
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5.2. Proof of Statement (3) of Theorem 2.6. Recall that the cutoff function r3(s, t) is com-
pactly supported in

O3 =
{

(s, t) : s0 < s <∞ and t < t−s or t > t+s

}
(5.6)

where t±s is defined in (2.11). The operator we analyze in this part of the proof is G∗r3G.
We define the following set

C(s, k) :=

{
x :

βB(s, x)

A(s, x)
= k

}
. (5.7)

Note that C(s, 1) = Σ2,X(s), C(s, β) is the vertical line x1 = (1 + α)s/2 = (1− β2)s/2, and if k is
small enough, C(s, k) = ∅. By (5.3), when k 6= β and C(s, k) 6= ∅ then C(s, k) is the circle centered

at
(
β2s(1+k2)
β2−k2 , 0

)
and of radius

r(s, k) :=

√
β2s2k2(β2 + 1)2

(β2 − k2)2
− h2. (5.8)

Let (s, t) ∈ O3. If there were a solution (x, y) to (5.2) for some k, then x ∈ E(s, t) ∩ C(s, k) (as
βB/A = k on C(s, k)) and y ∈ E(s, t)∩C(s, 1/k). If t > t+s then the ellipse E(s, t) encloses Σ2,X(s)
by a calculation. Therefore, by the final statement of Lemma 5.2, E(s, t) meets no circle C(s, k)
for k ∈ (0, 1] and so there is no solution to (5.2). Now, if t < t−s then the ellipse E(s, t) is enclosed
by Σ2,X(s) and, by the final statement of Lemma 5.2, E(s, t) meets no C(s, k) for k ∈ (1,∞) and
so there is no solution to (5.2) in this case, too. Therefore, C2 ∩WF ′(K3) = ∅ where K3 is the
Schwartz kernel of G∗r3G. Now proceeding as in the proof of Theorem 2.2, we complete the proof
of Statement (3) of Theorem 2.6. �

The rest of this section is devoted to the proof of Statement (2) of Theorem 2.6.

5.3. Proof of Statement (2) of Theorem 2.6. The reconstruction operator we consider in
statement (2) of Theorem 2.6 is G∗r2G where the mute r2 has compact support in

O2 = {(s, t) : s0 < s <∞ and t−s < t < t+s } (5.9)

where t±s is defined in (2.11) and where s0 is defined by (5.5).
Recall that the canonical relation of G drops rank on the union of two sets, Σ1 and Σ2. Ac-

cordingly, we decompose G into components such that the canonical relation of each component is
either supported near a subset of the union of these two sets, one of these two sets or away from
both these sets. To do this, we define several cutoff functions.

5.3.1. The primary cutoff functions ψ1 and ψ2. The cutoff ψ1(x) will be equal to 1 near the x1-axis
and zero away from it, and ψ2(s, x) will be equal to one near Σ2,X(s) and equal to zero away from
it as in Figure 1.

To define these functions precisely, we need to set up some preliminary relations. Because the
mute function r2 is zero near s0 and has compact support, there is an s1 > s0 such that r2 is zero
for s ≤ s1 and all t. Because the radius r(s1, 1) > 0 and the function r is continuous, there is a
k1 ∈ (0, 1) such that r(s1, k1) > 0. Since r (see (5.8)) is an increasing function in s and k separately,
we can choose ε > 0 such that

r(s, k) ≥ r(s1, k1) > 12ε for k ≥ k1, and s ≥ s1. (5.10)

Without loss of generality, we can assume

ε <
min(β − 1, 1− k1, 1/4)

6
. (5.11)
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Figure 1. Picture of supp(ψ1) and supp(ψ2). Note that the middle circle is Σ2,X(s)
and the circles are not exactly concentric.

Now, let ψ1 be an infinitely differentiable function defined as follows:

ψ1(x) =

{
1, |x2| < ε

0, |x2| > 2ε
(5.12)

and we extend this function smoothly between 0 and 1.
For s > s0, let k0(s) be defined by

r(s, k0(s)) = 0. (5.13)

Note that k0(s) can be explicitly calculated using (5.8). So, if k > k0(s), C(s, k) is a nontrivial
circle. Finally, note that if s ≥ s1, then k1 > k0(s); this is true because r(s, k1) ≥ r(s1, k1) > 0 for
such s.

To define ψ2 we first prove a lemma about the circles C(s, k).

Lemma 5.2. Let s ≥ s1.

(1) If k > β then C(s, k) is to the left of the vertical line C(s, β) which is to the left of C(s, `)
for any ` ∈ (k0(s), β).

(2) If k0(s) < j < k < β then C(s, j) is contained inside C(s, k), and these circles do not
intersect.

(3) For any δ ∈ (0, 6ε), {
x :

∣∣∣∣βB(s, x)

A(s, x)

∣∣∣∣ < δ

}
=
⋃
k∈I

C(s, k)

is an open set containing Σ2,X(s) = C(s, 1).

Proof. Statement (1) of the lemma is a straightforward calculation.
Now, fix s ≥ s1. Let k ∈ (k0(s), β), then the endpoints of C(s, k) on the x1-axis are

x`(k) =
β2s(1 + k2)

β2 − k2
−

√
β2s2k2(β2 + 1)2

(β2 − k2)2
− h2

xr(k) =
β2s(1 + k2)

β2 − k2
+

√
β2s2k2(β2 + 1)2

(β2 − k2)2
− h2

.

Clearly the functions x` and xr are smooth for k ∈ (k0(s), β). It is straightforward to see that
k 7→ xr(k) is a strictly increasing smooth function for k ∈ (k0(s), β).
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We prove that the function x` is strictly decreasing by showing x`
′ is always negative. A somewhat

tedious calculation shows that

x`
′(k) =

β2s(β2 + 1)k

(β2 − k2)2

2−
(β2+1)s(β2+k2)

β2−k2√
β2s2k2(β2+1)2

(β2−k2)2
− h2


By replacing the square root in this expression by the upper bound βsk(β2+1)

(β2−k2)
, we see that

x`
′(k) ≤ β2s(β2 + 1)k

(β2 − k2)2βk
(−1)(β − k)2

and the right-hand side of this expression is clearly negative.
The circles C(s, ·) are symmetric about the x1-axis, so if j and k are points in (k0(s), β) with

j < k, since x`(k) < x`(j) < xr(j) < xr(k), the circle C(s, j) is strictly inside the circle C(s, k).
This proves (2).

By the choice of ε in (5.11), 1 − 6ε > k1 and 1 + 6ε < β. Because x`(k) and xr(k) are smooth
strictly monotonic functions with nonzero derivatives, (1 − 6ε, 1 + 6ε) 3 k 7→ C(s, k) is a foliation
of an open, connected region containing C(s, 1) = Σ2,X(s), and this proves (3). �

We define

ψ2(s, x) =

1
∣∣∣βBA − 1

∣∣∣ < ε

0
∣∣∣βBA − 1

∣∣∣ > 2ε
(5.14)

and we extend smoothly between (which is possible by Lemma 5.2, statement (3)). By the lemma,
ψ2(s, ·) is equal to 1 on an open neighborhood of Σ2,X(s) and zero away from Σ2,X(s).

We assume, without loss of generality, that ψ1 and ψ2 are symmetric about the x1-axis.

Remark 5.3. We now can define the function g(s, t) in Remark 2.5. We let

D(s, ε) =

{
(x1, x2) : |x2| < ε,

∣∣∣∣βB(s, x)

A(s, x)
− 1

∣∣∣∣ < ε

}
. (5.15)

The set D(s, 4ε) is represented by the shaded set in Figure 2 that is near C(s, 1) = Σ2,X(s) and
the x1-axis. Let g be a smooth function of (s, t) that is zero if the ellipse E(s, t) given in (2.4)
intersects D(s, 4ε) and is equal to 1 if E(s, t) does not meet D(s, 5ε).

 𝑥1− 𝑥1+ 

Figure 2. Picture of ellipse E(s, t) that does not meet D(s, 4ε). As discussed in
Remark 2.5 and Remark 5.3, ellipses are muted by g if they intersect D(s, 4ε).
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5.3.2. Properties of G∗G and end of proof. We now write G = G0 + G1 + G2 + G3 where Gi are given
in terms of their kernels

KG0 =

∫
e−iϕaψ1ψ2dω, KG1 =

∫
e−iϕaψ1(1− ψ2)dω,

KG2 =

∫
e−iϕa(1− ψ1)ψ2dω, KG3 =

∫
e−iϕa(1− ψ1)(1− ψ2)dω,

where ϕ is the phase function of G. The supports of the Gi are given in Figure 3.

Figure 3. Picture indicating the rough locations of the support of G0, G1, G2, G3.
Note that the circles are not exactly concentric.

Now we consider G∗G, which using the decomposition of G as above can be written as G∗G =
G∗0G + (G1 + G2)∗G0 + G∗1G1 + G∗2G2 + G∗1G2 + G∗2G1 + G∗1G3 + G∗2G3 + G∗3G

The theorem now follows from Lemmas 5.4-5.6, and Theorem 5.7, which we now state and prove.
In the lemmas, we analyze the compositions above.

Recall that G1 and G2 are operators defined as follows:

G1V (s, t) =

∫
e−iϕ(s,t,x,ω)ψ1(x)(1− ψ2(s, x))a(s, t, x, ω)V (x)dxdω

and

G2V (s, t) =

∫
e−iϕ(s,t,x,ω)(1− ψ1(x))ψ2(s, x)a(s, t, x, ω)V (x)dxdω

Lemma 5.4. The operators G∗1G2 and G∗2G1 are smoothing.

Proof. We show that G∗1G2 is smoothing. The proof for the case of G∗2G1 is similar.
We have

G∗1V (x) =

∫
eiϕ(s,t,x,ω)ψ1(x)(1− ψ2(s, x))a(s, t, x, ω)V (s, t)dsdtdω.

where ψ1(x) and ψ2 are defined in (5.12) and (5.14) respectively. The Schwartz kernel of G∗1G2 is

K(x, y) =

∫
eiω(|y−γT (s)|+|y−γR(s)|−|x−γT (s)|−|x−γR(s)|)ã(x, y, s, ω) dsdω,

where ã(x, y, s, ω) has the following products of cutoff functions as an additional factor:

g(s, t)ψ1(x)(1− ψ2(s, x))(1− ψ1(y))ψ2(y, s).

Here t is determined from s and x as the value for which x ∈ E(s, t). For this reason, in trying
to understand the propagation of singularities, we need only to restrict ourselves, for each fixed
s ≥ s1, to those base points x and y for which

x ∈ supp(ψ1(·)(1− ψ2(s, ·)), y ∈ supp((1− ψ1(·)))ψ2(s, ·)). (5.16)
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We use this setup to show G∗1G2 is smoothing by showing its symbol is zero for covectors in
CtG ◦ CG (note that our argument shows that the symbol of the operator is zero in a neighborhood

in (T ∗(X) \ 0)2 of CtG ◦ CG). Let (x, ξ, y, ξ′) ∈ CtG ◦ CG . Then, there is an (s2, t2, η) ∈ T ∗(Y ) \ 0 such

that (x, ξ, s2, t2, η) ∈ CtG and (s2, t2, η, y, ξ
′) ∈ CG . For the rest of the proof, we fix this s2. (If there

are other values of s associated to the composition, we repeat this proof for those values of s.)
Because CtG ◦ CG ⊂ ∆ ∪ C1 ∪ C2, we consider three cases separately.

I. Covectors (x, ξ, y, ξ′) ∈ ∆∩
(
CtG ◦ CG

)
: In this case, x = y and x is in supp(ψ1)∩ supp(ψ2) ⊂

D(s2, 4ε). By the choice of the function g(s, t) in Remark 5.3, the symbol of G∗1G2 is zero above
such x.

II. Covectors (x, ξ, y, ξ′) ∈ C1 ∩
(
CtG ◦ CG

)
: In this case, (x1, x2) = (y1,−y2) and the argument

in case I shows that the symbol of G∗1G2 is zero for such x and y
III. Covectors (x, ξ, y, ξ′) ∈ C2 ∩

(
CtG ◦ CG

)
: If (x, ξ, y, ξ′) ∈ C2 ∩

(
CtG ◦ CG

)
, then for some (s2, t2)

above, there is a k2 > k0(s2), such that

x ∈E(s2, t2) ∩ supp(ψ1) ∩ supp(1− ψ2(s, ·)) ∩ C(s2, k2) (5.17)

y ∈E(s2, t2) ∩ supp(1− ψ1) ∩ supp(ψ2(s, ·)) ∩ C (s2, 1/k2) . (5.18)

Using (5.17), the fact that k2 = βB(s2, x)/A(s2, x), we see that |x2| < 2ε and |1− k2| > ε.
Now, using the restriction on 1/k2 in (5.18) and the fact that ε < 1/4, we see |1− k2| < 4ε.
Putting this together shows that

1− 4ε < k =
βB(s2, x)

A(s2, x)
< 1 + 4ε.

Since |x2| < 2ε, this shows that x ∈ D(s2, 4ε). Therefore E(s2, t2) ∩ D(s2, 4ε) 6= ∅ and
g(s2, t2) = 0 by Remark 5.3. Therefore, the symbol of G∗1G2 is zero near (x, ξ, y, ξ′) so G∗1G2 is
smoothing near (x, ξ, y, ξ′).

This finishes the proof that G∗1G2 is smoothing. �

Lemma 5.5. The operator G0 is smoothing.

Proof. Recall that the Schwartz kernel of G0 is

KG0 =

∫
e−iϕaψ1(x)ψ2(s, x)dω.

For each fixed s ≥ s1, the support of ψ1(·)ψ2(s, ·) is inside D(s, 4ε) and by the choice of the function
g(s, t) in Remark 5.3, the symbol of G0 is zero above such (s, x). �

Lemma 5.6. The operators G∗1G3, G∗2G3 and G∗3G can be decomposed as a sum of operators belonging
to the space I3(∆ \ (C1 ∪ C2)) + I3(C1 \ (∆ ∪ C2)) + I3(C2 \ (∆ ∪ C1)).

Proof. Each of these compositions is covered by the transverse intersection calculus.
We decompose G1, G2, and G3 into a sum of operators on which the compositions will be easier

to analyze. This is represented in Figure 4.
For G1, note that Σ2,X(s) divides {|x2| < 2ε} in three regions since r(s, 1) > 12ε by (5.10). Let

H1(s) be the part of {|x2| < 2ε} \ Σ2,X(s) to the left of Σ2,X(s) and let H2(s) be the part inside
Σ2,X(s) and H3(s) the part to the right of Σ2,X(s). Define our partitioned operators as follows
G1 = G1

1 + G2
1 + G3

1 where

Gi1V (s, t) =

∫
e−iϕ(s,t,x,ω)ψ1(x)(1− ψ2(s, x))χHi(s)(x)a(s, t, x, ω)V (x)dxdω

for i = 1, 2, 3. Note that the symbols are all smooth because χHj(s)(x)ψ1(x) (1− ψ2(s, x)) is a

smooth cutoff function in (s, x) since the support of ψ1 is inside {|x2| < 2ε} and the support of
(1− ψ2(s, ·)) does not meet Σ2(s).
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Figure 4. Picture indicating the rough locations of the support of G0, and the

partitioned functions Gi1, Gj2, and Gk3 . Note that the circles are not exactly concentric.

We decompose G2 into two operators in a similar way. Let I1 be the open upper half plane and
let I2 be the open lower half plane. Define

Gi2V (s, t) =

∫
e−iϕ(s,t,x,ω)(1− ψ1(x))ψ2(s, x)χIj(s)(x)a(s, t, x, ω)V (x)dxdω (5.19)

for j = 1, 2 Because the functions (1 − ψ1(·))ψ2(s, ·) are supported away from the x1 axis, these
symbols are smooth.

We decompose G3 into four operators in a similar way using Figure 4: Σ2,X(s) divides {x2 6= 0}
into four regions J1(s), the unbounded region above the x1-axis, J2(s), it’s mirror image in the
x1-axis, J3(s), the bounded region inside Σ2,X(s) and above the x1-axis, and its mirror image,
J4(s). We define

Gk3V (s, t) =

∫
e−iϕ(s,t,x,ω)(1− ψ1(x))(1− ψ2(s, x))χJk(s)(x)a(s, t, x, ω)V (x)dxdω

for k = 1, 2, 3, 4, and because of the cutoffs used, these are all FIO with smooth symbols.

To find the canonical relation of Gj1
∗Gk3 , we consider (x, ξ, y, ξ′) ∈ CtG ◦ CG and let (s, t) ∈ Y such

that (x, ξ, s, t, η) ∈ CtG and (s, t, η, y, ξ′) ∈ CG . In any case, (Gi1)∗Gj3 has canonical relation a subset

of CtG ◦ CG ⊂ ∆ ∪ C1 ∪ C2. To find which subset, we consider the restriction that the supports of

the Gji put on x and y. We use the fact that x and y are on E(s, t) plus the following rules to
understand the canonical relations of these operators:

(i) If the supports exclude x and y from being equal, then the canonical relation (WF ′) of the
composed operator does not include ∆.

(ii) if the supports exclude x and y from being reflections in the x1 axis then the canonical relation
of the composed operator does not include C1.

(iii) If the supports exclude x from being outside Σ2,X(s) and y being inside or vice versa, then
the canonical relation of the composed operator does not include C2.

We first consider (G1)∗G3. To do this, we partition G1 further. Let u be a smooth cutoff
function supported in [−ε, ε] and equal to one on [−ε/2, ε/2] and let σ+ = χ[0,2ε](1− u)ψ1(1− ψ2),
σo = χ[−ε,ε]uψ1(1− ψ2), and σ- = χ[−2ε,0](1− u)ψ1(1− ψ2) where the characteristic functions and

u are functions of x2. Note that, for each fixed s and functions of x, supp(σ+) ⊂ R × [ε/2, 2ε],
supp(σo) ⊂ R×[−ε, ε], supp(σ-) ⊂ R×[−2ε,−ε/2]. All these functions are smooth and ψ1(1−ψ2) =

σ+ +σo +σ-. This allows us to divide up each Gj1 (j = 1, 2, 3) into the sum of three operators where

Gj+1 (V ) has symbol equal to the symbol of G but multiplied by σ+Hj , Gjo1 (V ) has symbol equal
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to the symbol of G but multiplied by σoHj , and Gj−1 (V ) has symbol equal to the symbol of G but

multiplied by σ-Hj . Note that Gj1 = Gj+1 + Gjo1 + Gj−1 .

We now analyze the composition G1
1
∗G1

3 using this partition of G1
1 . Consider the composition

(G1+
1 )∗G1

3 . Because both operators are supported in x above the x1 axis, the canonical relation of
this composition cannot intersect C1 (see (ii)). Because they are both supported outside Σ2,X(s),
it cannot intersect C2 (since C2 associates points inside Σ2,X(s) only with points outside Σ2,X(s)

and vice versa by (iii)). So this shows (G1+
1 )∗G1

3 ∈ I(∆ \ C1).

Note that we use the transverse intersection calculus to show (G1+
1 )∗G1

3 and each of the other
operators in this lemma are regular FIO.

Now, we consider (G1o
1 )∗G1

3 . Note that G1o
1 is supported in x in |x2| < ε and G1

3 is supported
in x2 > ε. Therefore, the canonical relation of the composition can include neither ∆ nor C1 by
(i), (ii). Furthermore, because they are both supported outside Σ2,X(s), it does not contain C2 by
(iii). Therefore, (G1o

1 )∗G1
3 is smoothing.

Next, we consider (G1−
1 )∗G1

3 . The argument is similar to the case (G1+
1 )∗G1

3 , but this canonical
relation is contained in C1 \∆.

This shows that (G1
1)∗G1

3 is a sum of operators in I3(∆ \ (C1 ∪ C2)) + I3(C1 \ (∆ ∪ C2)).
The proof that (G1

1)∗G2
3 ∈ I3(∆\ (C1∪C2))+ I3(C1 \ (∆∪C2)) follows using the same arguments

but the roles of G1−
1 and G1+

1 are switched because G2
3 has support in x below the x1-axis and below

Σ2,X(s).
Now we consider (G1

1)∗G3
3 . Because the support in x of G1

1 is to the left of Σ2,X(s) and the
support of G3

3 is inside, the canonical relation of (G1
1)∗G3

3 cannot intersect ∆ (since there are no
points (x, ξ, x, ξ) in that canonical relation by the support condition and (i) and it cannot intersect
C1 for a similar reason by (ii). So (G1

1)∗G3
3 ∈ I3(C2 \ (∆ ∪ C1)).

A similar argument using symmetry of support of G3
3 and G4

3 in the x1 axis shows that (G1
1)∗G4

3 ∈
I3(C2 \ (∆ ∪ C1)).

Putting these together, we see that (G1
1)∗G3 ∈ I3(∆ \ (C1 ∪ C2)) + I3(C1 \ (∆ ∪ C2)) + I3(C2 \

(∆ ∪ C1)).
The proof that (G2

1)∗G3 ∈ I3(∆ \ (C1 ∪ C2)) + I3(C1 \ (∆ ∪ C2)) + I3(C2 \ (∆ ∪ C1)) is similar

but here we use the partition of G2
1 : G2+

1 , G2o
1 and G2−

1 . In a similar way, (G3
1)∗G3 ∈ I3(∆ \ (C1 ∪

C2)) + I3(C1 \ (∆ ∪ C2)) + I3(C2 \ (∆ ∪ C1)).
Thus, (G1)∗G3 ∈ I3(∆ \ (C1 ∪ C2)) + I3(C1 \ (∆ ∪ C2) + I3(C2 \ (∆ ∪ C1)).

Now we consider (G2)∗G3. Here we partition Gj2, j = 1, 2 into three operators with smooth
symbols as we did for G1:

• Gj+2 will have support in x for fixed s in the union of circles ∪k∈[1+ε,1+2ε]C(s, k) (outside of
Σ2,X(s)),

• Gjo2 will have support in x for fixed s in the union of circles ∪k∈[1−ε,1+ε]C(s, k) (surrounding
Σ2,X(s)) and be equal to the symbol of G2 in ∪k∈[1−ε/2,1+ε/2]C(s, k), and

• Gj−2 will have support in x for fixed s in the union of circles ∪k∈[1−2ε,1−ε]C(s, k) (inside
Σ2,X(s)).

The proof follows similar arguments as for (G1)∗G3 and it shows (G2)∗G3 ∈ I3(∆ \ (C1 ∪ C2)) +
I3(C1 \ (∆ ∪ C2) + I3(C2 \ (∆ ∪ C1)).

Finally, we consider (G3)∗G. By symmetry of the conditions (i), (ii), (iii), we justify (G3)∗G1 and
(G3)∗G2 are in I3(∆ \ (C1 ∪C2)) + I3(C1 \ (∆∪C2)) + I3(C2 \ (∆∪C1)). So, the only composition
to consider is (G3)∗G3, and by analyzing all combinations, we see (G3)∗G3 ∈ I3(∆ \ (C1 ∪ C2)) +
I3(C1 \ (∆ ∪ C2)) + I3(C2 \ (∆ ∪ C1)). This finishes the proof.

�
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We are left with the analysis of the compositions G∗1G1 and G∗2G2. This is the content of the next
theorem:

Theorem 5.7. Let G1 and G2 be as above. Then

(a) G∗1G1 ∈ I3,0(∆, C1) + I3(C2 \ (∆ ∪ C1)).
(b) G∗2G2 ∈ I3,0(∆, C2) + I3,0(C1, C2).

Proof. Consider the intersections of ∆, C1, C2. We have that ∆ intersects C1 cleanly in codimension
2; ∆ intersects C2 cleanly in codimension 1 and C1 intersects C2 cleanly in codimension 2.

For part (a) we decompose G1 = G1
1 + G2

1 + G3
1 . Now, we consider the compositions that (Gj1)∗Gj1

for j = 1, 2, 3. Using (i), (ii), and (iii), we have that WF ′((Gj1)∗Gj1) ⊂ ∆ ∪C1. Then, using a proof

similar to the one for Theorem 2.2, we see that (Gj1)∗Gj1 ∈ I3,0(∆, C1).
Arguments using (i), (ii), and (iii) show that the cross terms (G1

1)∗G2
1 , (G2

1)∗G1
1 , (G2

1)∗G3
1 , and

(G3
1)∗G2

1 are in I3(C2 \ (∆ ∪ C1)) and (G3
1)∗G1

1 and (G1
1)∗G3

1 are smoothing.

Now, we consider part (b) and the operator G∗2G2.
We recall that Σ1 and Σ2 are disjoint, Σ2 ∈ C \Σ1 thus C \Σ1 is a two sided fold. Next we use

[19] to get that (C \ Σ1)t ◦ (C \ Σ1) = ∆ ∪ C2, and that C2 is a two sided fold.
We use the decomposition (5.19) G2 = G1

2 + G2
2 where G1

2 is supported in the upper part of Σ2

and G2
2 is supported in the lower part of Σ2. Note that the support in x of G1

2 and G2
2 are disjoint.

Then using Theorem 3.9 we have that

(G1
2)∗G1

2 ∈ I3,0(∆, C2) and (G2
2)∗G2

2 ∈ I3,0(∆, C2).

Consider the operator R defined as follows:

RV (x1, x2) = V (x1,−x2).

This is a Fourier integral operator of order 0 and it is easy to check its canonical relation is C1. Let
Ĝ = G2

2 ◦R. We have Ĝ∗G1
2 ∈ I3,0(∆, C2). Note that C1 ◦∆ = C1, C1 ◦C2 = C2 and C1×∆ (as well

as C1 × C2) intersects T ∗X ×∆T ∗X × T ∗X transversally. Using [16, Proposition 4.1], this implies

that R∗G̃∗G1
2 ∈ I3,0(C1, C2). Since G̃∗ = R∗(G2

2)∗ and (R∗)2 = Id we have (G2
2)∗G1

2 ∈ I3,0(C1, C2)
Similarly, we show that

(G1
2)∗G2

2 ∈ I3,0(C1, C2).

This concludes the proof of Statement (2) of Theorem 2.6. �

5.4. Beam forming. This is equivalent to assuming the scatterer V has support in either the open
half-plane x2 > 0 or x2 < 0. In this case, C1 does not appear in the analysis.

Theorem 5.8. Let G be as in 2.11 of order 3
2 . Assume the amplitude of G is nonzero only on a

subset of either the upper half-plane (x2 > 0) or the lower half plane x2 < 0 and bounded away
from the x1 axis. Then G∗G ∈ I3,0(∆, C2), where C2 is given by 5.1.

Proof. We assume x2 > 0 (the other case is similar), Σ1 is empty and πL and πR have fold
singularities along Σ2 as proved in Proposition 5.1. Thus Ct ◦C = ∆∪C2 where C2 is a two-sided
fold. Using the results in Felea [3] and Nolan [21], we have that G∗G ∈ I3,0(∆, C2). �

In this case, C2 does affect the added singularities and a statement similar to Remark 2.3 holds
but with C2 replacing C1.
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Appendix A. Proofs of iterated regularity for F (α ≥ 0)

In this section, we prove that each of the p̃i given in (4.12) is a sum of products of derivatives of
Φ and smooth functions. This will finish the proof that F∗F ∈ I3,0(∆, C1).

A.1. Expression for x1 − y1. We will use the same prolate spheroidal coordinates 4.8 with foci
γR(s) and γT (s) to solve for x and y. We have

x1 − y1 =

(
1 + α

2
s+

1− α
2

s cosh ρ cosφ

)
−
(

1 + α

2
s+

1− α
2

s cosh ρ′ cosφ′
)

=
1− α

2
s
(
cosh ρ cosφ− cosh ρ′ cosφ′

)
=

1− α
2

s
(
(cosh ρ− cosh ρ′) cosφ+ cosh ρ′(cosφ− cosφ′)

)
. (A.1)

We have

∂ωΦ =
(
‖y − γT (s)‖+ ‖y − γR(s)‖ − (‖x− γT (s)‖+ ‖x− γR(s)‖)

)
= (1− α)s(cosh ρ′ − cosh ρ).

Therefore in (A.1), it is enough to express cosφ− cosφ′ in terms of ∂ωΦ and ∂sΦ. We obtain:

∂sΦ

ω
=

(
α
x1 − αs
A

+
x1 − s
B

)
−
(
α
y1 − αs
A′

+
y1 − s
B′

)
= α

cosh ρ cosφ+ 1

cosh ρ+ cosφ
+

cosh ρ cosφ− 1

cosh ρ− cosφ

−
(
α

cosh ρ′ cosφ′ + 1

cosh ρ′ + cosφ′
+

cosh ρ′ cosφ′ − 1

cosh ρ′ − cosφ′

)
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Combining the first and the third term, and second and the fourth term above and then simplifying,
we get

= α
(cosφ− cosφ′)(cosh ρ cosh ρ′ − 1) + (cosh ρ− cosh ρ′)(cosφ cosφ′ − 1)

(cosh ρ′ + cosφ′)(cosh ρ+ cosφ)

+
(cosφ− cosφ′)(cosh ρ cosh ρ′ − 1) + (cosh ρ− cosh ρ′)(1− cosφ cosφ′)

(cosh ρ− cosφ)(cosh ρ′ − cosφ′)

= (cosφ− cosφ′)(cosh ρ cosh ρ′ − 1)

(
α

(cosh ρ′ + cosφ′)(cosh ρ+ cosφ)
+

1

(cosh ρ− cosφ)(cosh ρ′ − cosφ′)

)
+ (cosh ρ− cosh ρ′)(cosφ cosφ′ − 1)

(
α

(cosh ρ′ + cosφ′)(cosh ρ+ cosφ)
− 1

(cosh ρ− cosφ)(cosh ρ′ − cosφ′)

)
Now denote

P± :=
α

(cosh ρ′ + cosφ′)(cosh ρ+ cosφ)
± 1

(cosh ρ− cosφ)(cosh ρ′ − cosφ′)

Note that since α > 0, P+ > 0. Therefore we have

cosφ− cosφ′ =
1

(cosh ρ cosh ρ′ − 1)P+

(
1

ω
∂sΦ−

(1− cosφ cosφ′)

(1− α)s
P−∂ωΦ

)
Now using this expression for the difference of cosines in (A.1), we are done.

A.2. Expression for x2
2 − y2

2. We have

x2
2 − y2

2 =
(1− α)2s2

4

(
sinh2 ρ sin2 φ cos2 θ − sinh2 ρ′ sin2 φ′ cos2 θ′

)
=

(1− α)2s2

4

(
sinh2 ρ sin2 φ− sinh2 ρ′ sin2 φ′

)
+

(1− α)2s2

4

(
− sinh2 ρ sin2 φ sin2 θ + sinh2 ρ′ sin2 φ′ sin2 θ′

)
(A.2)

Since x3 = y3 = 0, we have that the last term in (A.2) is 0.
Now we can write

sinh2 ρ sin2 φ− sinh2 ρ′ sin2 φ′ = (cosh2 ρ− cosh2 ρ′) sin2 φ− (cos2 φ− cos2 φ′) sinh2 ρ′ =
(cosh ρ− cosh ρ′)(cosh ρ+ cosh ρ′) sin2 φ− (cosφ− cosφ′)(cosφ+ cosφ′) sinh2 ρ′.
Since cosh ρ− cosh ρ′ and cosφ− cosφ′ can be expressed in terms of ∂ωΦ and ∂sΦ as above, we are
done.

A.3. Expression for ξ1 − η1. We have

ξ1 = −ω

(
x1 − αs√

(x1 − αs)2 + x2
2 + h2

+
x1 − s√

(x1 − s)2 + x2
2 + h2

)

η1 = −ω

(
y1 − αs√

(y1 − αs)2 + y2
2 + h2

+
y1 − s√

(y1 − s)2 + y2
2 + h2

)
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In prolate spheroidal coordinates, we have

ξ1 − η1

2ω
=

(
sinh2 ρ′ cosφ′

cosh2 ρ′ − cos2 φ′
− sinh2 ρ cosφ

cosh2 ρ− cos2 φ

)
=

(
sinh2 ρ′ cosφ′

cosh2 ρ′ − cos2 φ′
− sinh2 ρ′ cosφ′

cosh2 ρ− cos2 φ

+
sinh2 ρ′ cosφ′

cosh2 ρ− cos2 φ
− sinh2 ρ cosφ

cosh2 ρ− cos2 φ

)

= sinh2 ρ′ cosφ′

(
cosh2 ρ− cosh2 φ′ + cos2 φ′ − cos2 φ

(cosh2 ρ′ − cos2 φ′)(cosh2 ρ− cos2 φ)

)

+

(
sinh2 ρ′ cosφ′ − sinh2 ρ cosφ

cosh2 ρ− cos2 φ

)
.

= sinh2 ρ′ cosφ′

(
cosh2 ρ− cosh2 φ′ + cos2 φ′ − cos2 φ

(cosh2 ρ′ − cos2 φ′)(cosh2 ρ− cos2 φ)

)

+

(
(cosh2 ρ′ − cosh2 ρ) cosφ′ + sinh2 ρ(cosφ′ − cosφ)

cosh2 ρ− cos2 φ

)
.

As before we get the terms cosh ρ − cosh ρ′ and cosφ − cosφ′ which can be expressed in terms of
∂ωΦ and ∂sΦ.

A.4. Expression for (x2 − y2)(ξ2 + η2). We have

ξ2 = −ω
(

x2√
(x1−αs)2+x22+h2

+ x2√
(x1−s)2+x22+h2

)
and

η2 = −ω
(

y2√
(y1−αs)2+y22+h2

+ y2√
(y1−s)2+y22+h2

)
Thus

− (x2 − y2)(ξ2 + η2)
4

(1−α)sω
=

x2
2 cosh ρ

cosh2 ρ− cos2 φ
− y2

2 cosh ρ′

cosh2 ρ′ − cos2 φ′

+ x2y2

(
cosh ρ′

cosh2 ρ′ − cos2 φ′
− cosh ρ

cosh2 ρ− cos2 φ

)
= (x2

2 − y2
2)

cosh ρ

cosh2 ρ− cos2 φ

− y2(x2 − y2)

(
cosh ρ

cosh2 ρ− cos2 φ
− cosh ρ′

cosh2 ρ′ − cos2 φ′

)
.

Now

cosh ρ

cosh2 ρ− cos2 φ
− cosh ρ′

cosh2 ρ′ − cos2 φ′
=

cosh ρ− cosh ρ′

cosh2 ρ− cos2 φ

+ cosh ρ′
(

cosh2 ρ′ − cosh2 ρ+ cos2 φ− cos2 φ′

(cosh2 ρ− cos2 φ)(cosh2 ρ′ − cos2 φ′)

)
.

Next we use again the expressions for cosh ρ − cosh ρ′ and cosφ − cosφ′ as before and for x2
2 − y2

2

we use B.2.
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A.5. Expression for (x2 + y2)(ξ2 − η2). We have

(x2 + y2)(ξ2 − η2)
4

(1−α)sω

=
−x2

2 cosh ρ

cosh2 ρ− cos2 φ
+

y2
2 cosh ρ′

cosh2 ρ′ − cos2 φ′

+ x2y2

(
cosh ρ′

cosh2 ρ′ − cos2 φ′
− cosh ρ

cosh2 ρ− cos2 φ

)
= (y2

2 − x2
2)

cosh ρ

cosh2 ρ− cos2 φ

+ y2(x2 + y2)

(
cosh ρ

cosh2 ρ− cos2 φ
− cosh ρ′

cosh2 ρ′ − cos2 φ′

)
.

Now we are in a similar situation as in the previous case.

A.6. Expression for ξ2
2 − η2

2. We have

ξ2
2 − η2

2

( 4ω
(1−α)s)

2
=

(
x2

2 cosh2 ρ

cosh2 ρ− cos2 φ
− y2

2 cosh2 ρ′

cosh2 ρ′ − cos2 φ′

)
=

(x2
2 − y2

2) cosh2 ρ

cosh2 ρ− cos2 φ
+ y2

2

(
cosh2 ρ

cosh2 ρ− cos2 φ
− cosh2 ρ′

cosh2 ρ′ − cos2 φ′

)
=

(x2
2 − y2

2) cosh2 ρ

cosh2 ρ− cos2 φ
+ y2

2

(
cosh2 ρ− cosh2 ρ′

cosh2 ρ− cos2 φ
+

cosh2 ρ′
(cosh2 ρ′ − cosh2 ρ) + (cos2 φ− cos2 φ′)

(cosh2 ρ′ − cos2 φ′)(cosh2 ρ− cos2 φ)

)
This completes this part.

Appendix B. Expressions for t−s and t+s

αs s 0 

𝑡0 

ℎ 

𝑐(𝑠) 
𝑒(𝑠) 

𝑟(𝑠) 
𝑑(𝑐, 𝑒) 

𝛽𝐴− 𝐴− 

𝑟(𝑠) 

𝑥1− 

𝑥1+ 

Figure 5. The geometric setup of filtering, showing the vertical cross-section cor-
responding to x2 = 0.
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Recall that Σ2 is defined in (2.13) as

Σ2 =

{
(s, x, ω) ∈ CG :

(
x1 −

2αs

α+ 1

)2

+ x2
2 = −αs2 (α− 1)2

(α+ 1)2
− h2

}
Recall that s0 is defined by (5.5) and for s > s0 Σ2 is nonempty and not trivial.

We assume in this section that the cutoff function f in Section 2 is chosen so it is zero for s ≤ s0.
The radius and the x1-coordinate of the center of circle Σ2 are

r(s) =

√
−αs2(α− 1)2

(α+ 1)2
− h2, and c(s) =

2αs

α+ 1
.

Let e(s) = (α + 1)s/2 < 0 denote the center of ellipses on the plane. Then the distance between
e(s) and c(s) can be written as

d(c, e) = −s(α− 1)2

2(α+ 1)
.

For a fixed s let t−s and t+s denote correspondingly the smallest and the largest values of t, for
which the ellipsoid intersects Σ2. Notice, that since the normal to an ellipse at a point P bisects
the angle from the P to the foci, the condition γ̃R(s) ≤ γR(s) < c(s) implies that our ellipses on the
ground can not intersect the circle Σ2 at more than two points. Here γ̃R(s) denotes the right focus
of the ellipse on the ground. Figure 5 shows the setup for t0, where the ellipsoid passes through
x−1 , the closest to e(s) point of Σ2. The setup for t+s is similar, with the ellipsoid passing through
x+

1 , which is the farthest from e(s) point of Σ2.
A straightforward computation shows that

t−s = 2 (β + 1)

√
d (d− r)
β2 + 1

, t+s = 2 (β + 1)

√
d (d+ r)

β2 + 1
, (B.1)

where β =
√
−α.
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