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Abstract 
 

Synthetic aperture radar (SAR) images are subject to prominent speckle noise, which is generally 
considered a purely multiplicative noise process. In theory, this multiplicative noise is that the ratio of the 
standard deviation to the signal value, the “coefficient of variation,” is theoretically constant at every point 
in a SAR image. Most of the filters for speckle reduction are based on this property. Such property is 
irrelevant for the new filter structure, which is based on directional smoothing (DS) theory, the enhanced 
directional smoothing (EDS) that removes speckle noise from SAR images without blurring edges. We 
demonstrate the effectiveness of this new filtering method by comparing it to established speckle noise 
removal techniques on SAR images. 
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1. Introduction 
 

Synthetic aperture radar (SAR) imaging of the earth’s surface is a valuable modality for remote 
sensing in Argentina, since SAR is able to penetrate cloud cover and is independent of solar illumination. 
However, speckle noise generated from the coherent imaging technique of SAR is a serious impediment to 
computer interpretation of SAR images. This speckle noise can be successfully modeled as a purely 
multiplicative noise process, and as a result several interesting properties of the noise can be exploited to 
help reduce the noise without blurring or distorting edges [1]. In theory, the ratio of the standard deviation 
to the signal value, the “coefficient of variation,” is constant at every point in an image corrupted by 
purely multiplicative noise [1]. This property is not true in all the possible used images [2]. We use a new 
filter structure independent of such property which is based on directional smoothing (DS) theory [3], the 
enhanced directional smoothing (EDS) that removes speckle noise from SAR images without blurring 
edges. The new filter structure is able to direct a filtering operation to act over the complete image. By 
directing the smoothing operation away from edges, the filter reduces noise while sharpening edges. 
Methods used previously to reduce noise in images include speckle filters such as Median, Lee, Kuan, 
Frost, enhanced Lee, enhanced Frost, Gamma or MAP [4-13], morphology-based nonlinear filter [14], and 
DS [15,16]. Another possibility is de-noising a SAR image via wavelet shrinkage with a considerable 
computational complexity [17-24], based on wavelets properties [25-38]. 
 
2. Methods 

2.1. Speckle Model 
 

Speckle noise in SAR images is usually modeled as a purely multiplicative noise process of the form 
given in Eq.(1) below. The true radiometric values of the image are represented by u, and the values 
measured by the radar instrument are represented by v. The speckle noise is represented by s. 
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v(r,c) = u(r,c) s(r,c)                    (1) 
 
For single-look SAR images, s is Rayleigh distributed (for amplitude images) or negative exponentially 
distributed (for intensity images) with a mean of 1. For multi-look SAR images with independent looks, s 
has a gamma distribution with a mean of 1. Further details on this noise model are given in [39].  
 
2.2.  Speckle Reduction via Enhanced Directional Smoothing 

2.2.1 Theory of Enhanced Directional Smoothing 
 

To protect the edges from blurring while smoothing, a directional averaging filter can be useful. 
Spatial averages û(r, c:Θ) are calculated in several directions as 

 

û(r, c:Θ) = 

ΘN

1
 ∑

Θ∈Wk
∑

Θ∈Wl
 v(r-k, c-l)             (2) 

 
- which excludes to v(r, c) - and a direction Θ*  is found such that | v(r, c) - û(r, c:Θ*)  | is minimum. Then 

 
û(r,c) = û(r,c:Θ*)                         (3) 

 
gives the desired result for the suitably chosen window W  and a NΘ  number of directions, and where k 
and l depends on the size of such windows (kernel). 
The EDS filter has a speckle reduction approach that performs spatial filtering in a square-moving window 
know as kernel. The EDS filtering is based on the statistical relationship between the central pixel and its 
surround-ding pixels as shown in Figure 1.  
 
 

 

Fig. 1. 3x3 kernel 
 
 

The typical size of the filter window can range from 3-by-3 to 33-by-33, the size of the window must 
be odd. A larger filter window means that a larger area of the image can be used for calculation and 
possibly requires more computation time depending on the complexity of the filter’s algorithm. If the size 
of filter window is too large, the important details will be lost due to over smoothing. On the other hand, if 
the size of the filter window is too small, speckle reduction may not be very effective. In practice, a 3-by-3 
or a 7-by-7 filter window usually yields the best results. 

 
EDS performs the filtering based on either local statistical data given in the filter window to determine 

the noise variance within the filter window, or estimating the local noise variance using the effective 
equivalent number of looks (ENL) of a SAR image [24]. The estimated noise variance is then used to 
determine the amount of smoothing needed for each speckle image. The noise variance determined from 
the local filter window is more applicable if the intensity of an area is constant or flat whilst ENL is 
suitable if there are difficulties determining if an area of the image is flat. 
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2.2.2.  Algorithms 
 

Algorithm I represents EDS function for four directions and a 3x3 kernel 

1  function v = eds(v,ROW,COL) 
2  for r = 2:ROW-1 
3    for c = 2:COL-1 
4      d(1) = (v(r,c-1)  +v(r,c+1)  )/2; 
5      d(2) = (v(r-1,c)  +v(r+1,c)  )/2; 
6      d(3) = (v(r-1,c-1)+v(r+1,c+1))/2; 
7      d(4) = (v(r+1,c-1)+v(r-1,c+1))/2; 
8      for n = 1:4 
9        D(n) = abs(d(n)-v(r,c)); 
10     end 
11     [Dmin,aDmin] = min(D); 
12     v(r,c) = d(aDmin); 
13   end 
14 end 

Algorithm I 
 

where:  
v represents the bitmap matrix of the image 
eds(•) is the function that calculate the enhanced directional smoothing of (•) 
ROW is the number of rows and COL is the number of columns of v.  
d represents the vector of directions 
D represents the vector of absolute differences 
abs(•) is the function that calculate the absolute value of (•) 
min(•) is the function that calculate the minimum of vector (•) and its location 
Dmin is the minimum of vector D 
aDmin is the location of Dmin 

 
Algorithm II represents the homomorphic filter that calls to the EDS function. 

1  [v,map] = imread('namefile.bmp'); 
2  v = double(v); 
3  [ROW,COL] = size(v); 
4  v = v + ones(ROW,COL); 
5  v = log(v); 
6  v = eds(v,ROW,COL); 
7  v = exp(v); 
8  v = round(v); 
9  v = v - ones(ROW,COL); 
10 v = uint8(v); 
11 imwrite(v,map,'namefileeds.bmp') 

Algorithm II 
 
where:  

[v,map] = imread('namefile.bmp'); reads the indexed image in namefile.bmp (Windows bitmap) 
into v and its associated colormap into map. Colormap values in the image file are automatically 
rescaled into the range [0,1].  
double(•) returns the double precision value for (•) 
size(•) is the function that calculate the dimensions of matrix (•) 
ones(ROW,COL) is an ROW-by-COL matrix of ones. 
log(•) is the natural logarithm of the elements of (•) 
exp(•) is the exponential of the elements of (•), e to the (•) 
round(•) is the function that round towards nearest integer of (•) 
uint8(•) converts the elements of array (•) into unsigned 8-bit integers. 
imwrite(v,map,namefileeds.bmp) writes the indexed image in v, and its associated colormap map, to 
namefileeds.bmp 
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In Algorithm II, the code line “v = v + ones(ROW,COL);” is for avoiding log(0) = - ∞. 
EDS is applied after chirp scaling algorithm [40] or any algorithm for SAR image generation, so [41]. 

 
2.2.3. Statistical Measurement 
 

In this work, the assessment parameters that are used to evaluate the performance of speckle reduction 
are Noise Variance, Mean Square Difference [15,16], Equivalent Number of Looks and Deflection Ratio 
[24], where:  
 
2.2.3.1. Noise Variance (NV) 

NV determines the contents of the speckle in the image. A lower variance gives a “smoother” image 
as more speckle is reduced, although, it not necessarily depends on the intensity. The formula for 
calculating the variance is given in Eq.(4) 

 

 2σ   =  
N

1
 ∑

−

=

1

0

N

j

uj
2                                              (4) 

 
2.2.3.2. Mean Square Difference (MSD) 
MSD indicates average difference of the pixels throughout the image where uj is the denoised image, and 
vj is the original image. A higher MSD indicates a greater difference between the original and denoised 
image. This means that there is a significant speckle reduction. Nevertheless, it is necessary to be very 
careful with the edges. The formula for the MSD calculation is given in Eq.(5) 
 

 MSD =  
N

1
 ∑

−

=

1

0

N

j

(uj – vj )2                     (5) 

 
where N is the size of the image. 
 
2.2.3.3. Equivalent Numbers of Looks (ENL) 
Another good approach of estimating the speckle noise level in a SAR image is to measure the ENL over a 
uniform image region [17]. A larger the value of ENL usually corresponds to a better quantitative 
performance. The value of ENL also depends on the size of the tested region, theoretically a larger region 
will produces a higher ENL value than over a smaller region but it also tradeoff the accuracy of the 
readings. Due to the difficulty in identifying uniform areas in the image, we proposed to divide the image 
into smaller areas of 25 x 25 pixels, obtain the ENL for each of these smaller areas and finally take the 
average of these ENL values. The formula for the ENL calculation is given in Eq.(6) 
 

ENL = (µ /σ)2                      (6) 
 
where µ is the mean of the uniform region and σ is the standard deviation of an uniform region The signi- 
ficance of obtaining both MSD and ENL measurements in this work is to analyze the performance of the 
filter on the overall region as well as in smaller uniform regions. 
 
2.2.3.4. Deflection Ratio (DR) 
A third performance estimator that we used in this work is the DR proposed by H. Guo et al (1994), [17]. 
The formula for the deflection calculation is given in Eq.(7) 
 

M =  (vr,c – v µ ) / v σ                     (7) 
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where vr,c  is the scalar pixel value of the image, v µ  is the estimated mean of vr,c  and v σ  is the estimated 
standard deviation of vr,c . The ratio M should be higher at pixels with stronger reflector points and lower 
elsewhere. In H. Guo et al ‘s paper, this ratio is used to measure the performance between different 
wavelet shrinkage techniques on the diagonal subband only. We instead apply the ratio approach to the 
same area for wavelet and a kernel that we identify in Fig.1 for our and standard speckle filters. 
 
3. Results 
 
 3.1. Performance evaluation 
 

The simulations demonstrate that EDS algorithm improves the speckle reduction performance to the 
maximum, for single polarization SAR image like fully polarimetric SAR images (when available).  

 
Here, we present a set of experimental results using one ERS SAR Precision Image (PRI) standard of 

Buenos Aires area. Such image was converted to bitmap file format for its treatment [42]. 
 
3.2. Measurements 

Fig.2 shows a noisy image used in the experiment from remote sensing satellite ERS-2, with a 
540x553 (pixels) x 256 (gray levels) bitmap matrix. Table I summarizes the assessment parameters vs. 11 
filters for Fig.2, where En-Lee means Enhanced Lee Filter, and En-Frost means Enhanced Frost Filter. 
Fig.3 shows the filtered images in the experiment, processed by using eleven speckle reduction schemes: 
Median, Lee, Kuan, Gamma, Enhanced Lee, Frost, Enhanced Frost, Symlet Wavelets basis 4 and 1 level 
of decomposition, Daubechies 15 wavelet basis and 1 level of decomposition (improvements were not 
noticed with other wavelets) [38], DS and EDS filters, respectively. 

 
Fig.3 summarizes the edge preservation performance of EDS vs. the rest of the filters with a 

considerably smaller computational complexity.   
 
A 3x3 kernel was employed for all statistic speckle filters including EDS. 
 
The assessment parameters NV, MSD, ENL and DR were applied to the whole image. 
 
For Lee, Enhanced Lee, Kuan, Gamma, Frost and Enhanced Frost filters the damping factor is set to 

1, see [5-12]. The quantitative results of Table I show that the EDS can eliminate speckle without 
distorting useful image information and without destroying the important image edges. 

 
In the experiment, EDS outperformed the conventional and no conventional speckle reducing filters 

in terms of edge preservation measured by Pratt figure of merit [3]. In nearly every case in every homoge-
neous region, EDS produced the lowest standard deviation and were able to preserve the mean value of 
the region. The numerical results are further supported by qualitative examination (see Fig. 3).  

 
In the experiment, the filters was applied to complete image, however, only a selected 128x128 pixels 

windows is showed for image resolutions considerations.  
 
All filters were implemented in MATLAB® (Mathworks, Natick, MA) on a PC with an Athlon (2.4 

GHz) processor. 
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4. Conclusions 

In this paper we have developed a new DS algorithmic version based techniques for removing 
multiplicative noise in SAR imagery. We have shown that with a special filter window (3x3 kernel), the 
comparison with most commonly used filters (used for SAR imagery [4-38], including wavelets) show 
lower performance than the EDS for the studied benchmark parameters. This observation has directed us 
to formulate a new adaptive edge-preserving application of EDS tailored to speckle contaminated         
imagery. On the other hands, identical results obtained with Symlet wavelet basis 4 and 1 level of 
decomposition were obtained with the Daubechies wavelet basis 15 and 1 level of decomposition for the 
experiment. 

 
The EDS exploits the local coefficient of variations in reducing speckle. The performance figures 

obtained by means of computer simulations reveal that the EDS algorithm provides superior performance 
in comparison to the above mentioned filters in terms of smoothing uniform regions and preserving edges 
and features. The effectiveness of the technique encourages the possibility of using the approach in a 
number of ultrasound and radar applications. Besides, the method is computationally efficient and can 
significantly reduce the speckle while preserving the resolution of the original image. Considerably 
increased deflection ratio strongly indicates improvement in detection performance. Also, cleaner images 
suggest potential improvements for classification and recognition.  
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Fig. 2. The white square represents the perimeter of the selected windows (128x128 pixels)  
of the ERS-2 image for the experiment. 
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Table I. Assessment Parameters vs. Filters for Fig. 2 
 

Filter Assessment Parameters 
NV MSD ENL DR 

Original noisy image 1.0048e+004 - 7.6266 -4.6797e-004 
Wavelet (sym4) 8.3954e+003 888.5013 21.3135 0.0031 

Wavelet (db15) 8.4049e+003 885.6094 21.2480 3.8729e-005 

En-Frost 7.9526e+003 931.0141 43.6911 -0.0014 
En-Lee 7.9521e+003 930.8242 43.6627 -0.0014 
Frost 8.1157e+003 649.7037 36.3795 -9.4558e-004 
Lee 7.9489e+003 939.4810 43.9331 -0.0014 

Gamma 7.9452e+003 932.9512 43.3836 -0.0016 
Kuan  8.3265e+003 406.7207 23.1285 -0.0013 

Median 7.9524e+003 931.3837 43.6835 -0.0014 
DS 8.8840e+003 255.1525 14.4673 -0.0011 

EDS 8.5924e+003 525.7491 19.0819 -0.0012 
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Fig. 3. (a) Original noisy image (Fig. 2). Filtered images from (b) Median, (c) Lee, (d) Kuan, (e) Gamma, 
(f) Enhanced Lee, (g) Frost, (h) Enhanced Frost, (i) Symlet Wavelets basis 4 and 1 level of decomposition, 

(j) Daubechies 15 Wavelets basis and 1 level of decomposition, (k) DS and (l) EDS filters. 
 


