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Abstract

Synthetic aperture radar (SAR) images are subjeptdminent speckle noise, which is generally
considered a purely multiplicative noise procesghkory, this multiplicative noise is that theioadf the
standard deviation to the signal value, the “cogffit of variation,” is theoretically constant akey point
in a SAR image. Most of the filters for speckle uetibn are based on this property. Such property is
irrelevant for the new filter structure, which iaded on directional smoothing (DS) theory, the robd
directional smoothing (EDS) that removes specklsenfrom SAR images without blurring edges. We
demonstrate the effectiveness of this new filtemmethod by comparing it to established speckleenois
removal techniques on SAR images.
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1. Introduction

Synthetic aperture radar (SAR) imaging of the earlurface is a valuable modality for remote
sensing in Argentina, since SAR is able to penetcliud cover and is independent of solar illumorat
However, speckle noise generated from the coh@rerging technique of SAR is a serious impediment to
computer interpretation of SAR images. This specidise can be successfully modeled as a purely
multiplicative noise process, and as a result séveteresting properties of the noise can be atqaldo
help reduce the noise without blurring or distagtadges [1]. In theory, the ratio of the standardation
to the signal value, the “coefficient of variatidis constant at every point in an image corrupibgd
purely multiplicative noise [1]. This property istrtrue in all the possible used images [2]. Weaisew
filter structure independent of such property whilhased on directional smoothing (DS) theory {3§
enhanced directional smoothing (EDS) that remoypexide noise from SAR images without blurring
edges. The new filter structure is able to direfittaring operation to act over the complete imaBg
directing the smoothing operation away from edtesfilter reduces noise while sharpening edges.
Methods used previously to reduce noise in imagekide speckle filters such as Median, Lee, Kuan,
Frost, enhanced Lee, enhanced Frost, Gamma or MIAB][ morphology-based nonlinear filter [14], and
DS [15,16]. Another possibility is de-noising a SARage via wavelet shrinkage with a considerable
computational complexity [17-24], based on wavebstperties [25-38].

2. Methods
2.1. Speckle Model
Speckle noise in SAR images is usually modeled msraly multiplicative noise process of the form

given in Eq.(1) below. The true radiometric valudsthe image are represented lbyand the values
measured by the radar instrument are representedithe speckle noise is representedby



v(r,c) = u(r,c) g(r,c) Q)
For single-look SAR images,is Rayleigh distributed (for amplitude images)nagative exponentially

distributed (for intensity images) with a mean ofbr multi-look SAR images with independent looks,
has a gamma distribution with a mean of 1. Furtletails on this noise model are given in [39].

2.2. Speckle Reduction via Enhanced Directionab&ting

2.2.1 Theory of Enhanced Directional Smoothing

To protect the edges from blurring while smoothiagdirectional averaging filter can be useful.
Spatial averaged(r, c:®) are calculated in several directions as
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a(r,c) = G(r,c:0%) 3)

gives the desired result for the suitably chosemdaivW and aNe number of directions, and wheke
andl depends on the size of such windows (kernel).

The EDS filter has a speckle reduction approachpbédorms spatial filtering in a square-moving damv

know as kernel. The EDS filtering is based on tadstical relationship between the central pixad s

surround-ding pixels as shown in Figure 1.
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Fig. 1. 3x3 kernel

The typical size of the filter window can rangenfr@-by-3 to 33-by-33, the size of the window must
be odd. A larger filter window means that a largeza of the image can be used for calculation and
possibly requires more computation time dependmghe complexity of the filter's algorithm. If treze
of filter window is too large, the important desailill be lost due to over smoothing. On the othend, if
the size of the filter window is too small, speckdeuction may not be very effective. In practiz&-by-3
or a 7-by-7 filter window usually yields the bessults.

EDS performs the filtering based on either locatistical data given in the filter window to deténen
the noise variance within the filter window, orig®tting the local noise variance using the effectiv
equivalent number of looks (ENL) of a SAR image][ZBhe estimated noise variance is then used to
determine the amount of smoothing needed for epebkée image. The noise variance determined from
the local filter window is more applicable if theténsity of an area is constant or flat whilst ENL
suitable if there are difficulties determining if area of the image is flat.



2.2.2. Algorithms

Algorithm | represents EDS function for four directs and 8x3 kernel

1 function v = eds(v,ROW,COL)
2 forr=2:ROW-1

3 forc=2:COL-1

4 d(2) = (v(r,c-1) +v(r,c+1) )/2;
5 d(2)=(v(r-1,c) +v(r+l,c) )/2;
6  d(3) = (v(r-1,c-1)+v(r+1,c+1))/2;
7 d(4) = (v(r+1,c-1)+v(r-1,c+1))/2;
8 forn=14

9 D(n) = abs(d(n)-v(r,c));

10 end

11  [Dmin,aDmin] = min(D);

12 v(r,c) = d(@bmin);

13 end

14 end

Algorithm |

where:
v represents the bitmap matrix of the image
eds()is the function that calculate the enhanced doeat smoothing ofe)
ROWis the number of rows ar@OL is the number of columns of
d represents the vector of directions
D represents the vector of absolute differences
abs(*)is the function that calculate the absolute valug)
min(e) is the function that calculate the minimum of we¢t) and its location
Dminis the minimum of vectdd
aDminis the location oDmin

Algorithm Il represents the homomorphic filter tioalls to theEDS function.

1 [v,map] = imread('namefile.bmp");
2 v =double(v);

3 [ROW,COL] = size(v);

4 v=v+ones(ROW,COL);

5 v=log(v);

6 v = eds(v,ROW,COL);

11 imwrite(v,map, namefileeds.bmp’)

Algorithm I

where:
[v,map] = imread(namefile.omp"; reads the indexed image mamefile.bompgWindows bitmap)
into v and its associated colormap immap Colormap values in the image file are automdiical
rescaled into the range [0,1].
double(s)returns the double precision value (or
size(#)is the function that calculate the dimensions afnr ()
ones(ROW,COLis an ROW-by-COL matrix of ones.
log(*) is the natural logarithm of the elementg«)f
exp(+)is the exponential of the elementg9f e to the*)
round(e)is the function that round towards nearest integér)
uint8() converts the elements of arf@yinto unsigned 8-bit integers.
imwrite(v,map,namefileeds.bmyyites the indexed image w and its associated colormapap, to
namefileeds.bmp



In Algorithm I, the code lineV = v + ones(ROW,COL);T1s for avoidinglog(0) = - .
EDS is applied after chirp scaling algorithm [4@Jamy algorithm for SAR image generation, so [41].

2.2.3. Statistical Measurement

In this work, the assessment parameters that adbtosevaluate the performance of speckle reduction
are Noise Variance, Mean Square Difference [15,&Efivalent Number of Looks and Deflection Ratio
[24], where:

2.2.3.1. Noise Variance (NV)

NV determines the contents of the speckle in thegien A lower variance gives a “smoother” image
as more speckle is reduced, although, it not nadgsdepends on the intensity. The formula for
calculating the variance is given in Eq.(4)
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2.2.3.2. Mean Square Difference (MSD)

MSD indicates average difference of the pixelsulgimut the image wheng is the denoised image, and
vj is the original image. A higher MSD indicates aaer difference between the original and denoised
image. This means that there is a significant dpe@duction. Nevertheless, it is necessary todg v
careful with the edges. The formula for the MSDcakdtion is given in Eq.(5)

N-=
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MSD = N Z (U —v) ©)

=

J:
where N is the size of the image.

2.2.3.3. Equivalent Numbers of Looks (ENL)

Another good approach of estimating the specklseni@vel in a SAR image is to measure the ENL aver
uniform image region [17]. A larger the value of ENisually corresponds to a better quantitative
performance. The value of ENL also depends onitteedf the tested region, theoretically a larggioe
will produces a higher ENL value than over a smatkgion but it also tradeoff the accuracy of the
readings. Due to the difficulty in identifying uaifm areas in the image, we proposed to dividerttage
into smaller areas of 25 x 25 pixels, obtain theLEdF each of these smaller areas and finally tiie
average of these ENL values. The formula for thé Edlculation is given in Eq.(6)

ENL = (u/0)? (6)

wherep is the mean of the uniform region aaits the standard deviation of an uniform region $hui-
ficance of obtaining both MSD and ENL measureméanthis work is to analyze the performance of the
filter on the overall region as well as in smallaiform regions.

2.2.3.4. Deflection Ratio (DR)
A third performance estimator that we used in thisk is the DR proposed by H. Geb al (1994), [17].
The formula for the deflection calculation is givierEq.(7)

M= (Vic— V) /V, (7)



wherev;¢ is the scalar pixel value of the image, is the estimated mean af. andv, is the estimated
standard deviation of.c. The ratio M should be higher at pixels with sgenreflector points and lower
elsewhere. In H. Guet al ‘s paper, this ratio is used to measure the pedooa between different
wavelet shrinkage techniques on the diagonal subbaty. We instead apply the ratio approach to the
same area for wavelet and a kernel that we ideintifig.1 for our and standard speckle filters.

3. Results
3.1. Performance evaluation

The simulations demonstrate that EDS algorithm owes the speckle reduction performance to the
maximum, for single polarization SAR image likelyubolarimetric SAR images (when available).

Here, we present a set of experimental resultgusie ERS SAR Precision Image (PRI) standard of
Buenos Aires area. Such image was converted tapifite format for its treatment [42].

3.2. Measurements

Fig.2 shows a noisy image used in the experimesrn fremote sensing satellite ERS-2, with a
540x553 (pixels) x 256 (gray levels) bitmap matiliable | summarizes the assessment parameterg vs. 1
filters for Fig.2, where En-Lee means Enhanced E#dter, and En-Frost means Enhanced Frost Filter.
Fig.3 shows the filtered images in the experimpricessed by using eleven speckle reduction schemes
Median, Lee, Kuan, Gamma, Enhanced Lee, Frost, riftaFrost, Symlet Wavelets basis 4 and 1 level
of decomposition, Daubechies 15 wavelet basis aleldl of decomposition (improvements were not
noticed with other wavelets) [38], DS and EDS fidtaespectively.

Fig.3 summarizes the edge preservation performaficEDS vs. the rest of the filters with a
considerably smaller computational complexity.

A 3x3 kernel was employed for all statistic spediters including EDS.
The assessment parameters NV, MSD, ENL and DR aypked to the whole image.

For Lee, Enhanced Lee, Kuan, Gamma, Frost and [Erhdfrost filters the damping factor is set to
1, see [5-12]. The quantitative results of Tablehbw that the EDS can eliminate speckle without
distorting useful image information and without tleging the important image edges.

In the experiment, EDS outperformed the conventiana no conventional speckle reducing filters
in terms of edge preservation measured by Pratteigf merit [3]. In nearly every case in every loga
neous region, EDS produced the lowest standarchtiewiand were able to preserve the mean value of
the region. The numerical results are further stipddy qualitative examination (see Fig. 3).

In the experiment, the filters was applied to castgimage, however, only a selected 128x128 pixels
windows is showed for image resolutions considenati

All filters were implemented in MATLAB® (Mathworkd\atick, MA) on a PC with an Athlon (2.4
GHz) processor.



4. Conclusions

In this paper we have developed a new DS algorithweirsion based techniques for removing
multiplicative noise in SAR imagery. We have shathat with a special filter window (3x3 kernel), the
comparison with most commonly used filters (usedSAR imagery [4-38], including wavelets) show
lower performance than the EDS for the studied berack parameters. This observation has directed us
to formulate a new adaptive edge-preserving appticaof EDS tailored to speckle contaminated
imagery. On the other hands, identical results inbth with Symlet wavelet basis 4 and 1 level of
decomposition were obtained with the Daubechieseleh\basis 15 and 1 level of decomposition for the
experiment.

The EDS exploits the local coefficient of variatiom reducing speckle. The performance figures
obtained by means of computer simulations revesdlttie EDS algorithm provides superior performance
in comparison to the above mentioned filters imteof smoothing uniform regions and preserving sdge
and features. The effectiveness of the techniquewrages the possibility of using the approach in a
number of ultrasound and radar applications. Besittee method is computationally efficient and can
significantly reduce the speckle while preservihg tresolution of the original image. Considerably
increased deflection ratio strongly indicates inweraent in detection performance. Also, cleaner isag
suggest potential improvements for classificatiod eecognition.
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Fig. 2. The white square represents the perimétidnecselected windows (128x128 pixels)
of the ERS-2 image for the experiment.



Table I. Assessment Parameters vs. Filters forZig.

Filter AssessmerParameter
NV MSD ENL DR
Original noisy imageg 1. 0048e+004 - 7.6266 -4.6797e-004
Wavelet (sym< 8. 3954e+003 888. 5013 21. 3135 0. 0031
Wavelet (db1= 8.4049e+003 885. 6094 21. 2480 3. 8729e- 005
En-Fros 7.9526e+003 931. 0141 43. 6911 -0.0014
En-Lee 7.9521e+003 930. 8242 43. 6627 -0.0014
Fros 8.1157e+003 649. 7037 36. 3795 - 9. 4558e- 004
Lee 7.9489e+003 939. 4810 43. 9331 -0. 0014
Gammi 7.9452e+003 932. 9512 43. 3836 -0. 0016
Kuan 8. 3265e+003 406. 7207 23.1285 -0.0013
Mediar 7.9524e+003 931. 3837 43. 6835 -0. 0014
DS 8. 8840e+003 255. 1525 14. 4673 -0.0011
EDS 8.5924e+003 525. 7491 19. 0819 -0.0012




Fig. 3. (a) Original noisy image (Fig. 2). Filterimaages from (b) Median, (c) Lee, (d) Kuan, (e) Gzam
(f) Enhanced Lee, (g) Frost, (h) Enhanced FrosEyimlet Wavelets basis 4 and 1 level of decomjpusit
(j) Daubechies 15 Wavelets basis and 1 level obagosition, (k) DS and (I) EDS filters.
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