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Abstract—We introduce a deep learning (DL) framework for
inverse problems in imaging, and demonstrate the advantages
and applicability of this approach in passive synthetic aperture
radar (SAR) image reconstruction. We interpret image recon-
struction as a machine learning task and utilize deep networks
as forward and inverse solvers for imaging. Specifically, we
design a recurrent neural network (RNN) architecture as an
inverse solver based on the iterations of proximal gradient descent
optimization methods. We further adapt the RNN architecture
to image reconstruction problems by transforming the network
into a recurrent auto-encoder, thereby allowing for unsupervised
training. Our DL based inverse solver is particularly suitable for
a class of image formation problems in which the forward model
is only partially known. The ability to learn forward models and
hyper parameters combined with unsupervised training approach
establish our recurrent auto-encoder suitable for real world
applications.

We demonstrate the performance of our method in passive
SAR image reconstruction. In this regime a source of opportunity,
with unknown location and transmitted waveform, is used to
illuminate a scene of interest. We investigate recurrent auto-
encoder architecture based on the `1 and `0 constrained least-
squares problem. We present a projected stochastic gradient
descent based training scheme which incorporates constraints
of the unknown model parameters. We demonstrate through
extensive numerical simulations that our DL based approach
out performs conventional sparse coding methods in terms of
computation and reconstructed image quality, specifically, when
no information about the transmitter is available.

I. INTRODUCTION

Deep Learning (DL) has dramatically advanced the state-of-
the-art for many problems in science and engineering. These
include speech recognition, natural language processing, visual
object recognition, and many others [1], [2]. In this paper,
we present a novel DL framework for inverse problems in
imaging and demonstrate its applicability and advantages in
passive synthetic aperture radar (SAR) image reconstruction.

In recent years, DL has drawn increasing attention in
signal processing community. Several theoretical studies were
conducted with the goal of connecting deep networks to
established frameworks and concepts, such as wavelets [3],
[4], scattering transforms [3]–[5], minimal sufficient statistics
[6], and generative probabilistic models [7]. The most notable
applications of DL in signal processing were explored for
compressed sensing, specifically for sparse coding and signal

1 Yazıcı, Yonel, and Mason are with the Department of Electrical, Computer
and Systems Engineering, Rensselaer Polytechnic Institute, 110 8th Street,
Troy, NY 12180 USA, E-mail: B. Y: yazici@ecse.rpi.edu, Phone: (518)-276
2905, Fax: (518)-276 6261.

* Corresponding author.
This work was supported by the Air Force Office of Scientific Research

(AFOSR) under the agreement FA9550-16-1-0234.

recovery [8]–[12]. Approaching sparse inverse problems with
deep neural networks that mimic the coordinate descent (COD)
and iterative shrinkage thresholding algorithm (ISTA) were
first proposed in [8]. This approach was then extended to
the approximate message passing (AMP) algorithm, and was
shown to have improved performance over the ISTA based
counter part [10]. For both methods, the neural network is
formed by unfolding the iterative optimization method, yield-
ing a recurrent neural network (RNN) model. The connection
between optimization and DL has been further investigated in
recent studies for learning problem specific gradient descent
parameters [13], and estimating priors for inference from data
[14]. For image reconstruction, DL with convolutional neural
networks has been recently described for problems in which
the underlying normal operator is Toeplitz. This method was
shown to outperform total variation regularized reconstruction
for sparse view X-Ray computed tomography [15].

With the exception of [15], existing studies explore appli-
cations of DL in generic signal recovery problems. In this
study, we are primarily interested in exploring DL framework
for inverse problems in imaging which can be categorized
into three classes: forward modeling, that is modeling the
relationship between the quantity of interest and measure-
ments; inversion, that is forming an image of the quantity of
interest from measurements; and finally design of algorithms
for computationally efficient forward and inverse solvers. We
postulate that DL framework can be exploited to address all
three aspects of inverse problems in imaging.

We start with a review of key concepts and tools in DL
and present the conceptual evolution from conventional to
DL based machine learning algorithms. While conventional
machine learning algorithms can be viewed as a two-layer
process, DL based approach involves multiple hidden layers
inserted in between the two layers and a non-linearity in
each layer. We next provide an interpretation of forward
modeling and image reconstruction as machine learning tasks
and present extensions from the conventional two-layer linear
processing to multi-layer non-linear processing as hidden
layers. As a result, deep network becomes a non-linear forward
model potentially capturing the relationship between physical
measurements and quantity of interest more accurately than
its linear counterparts. In addressing the inversion problem,
we extend the conventional two-layer processing involving
filtering and backprojection to DL based approach by inserting
multiple hidden layers in between filtering and backprojection
steps. We next motivate the choice of network non-linearity by
non-Gaussian prior models in a Bayesian formulation of the
image reconstruction problem and the solution of the resulting
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minimization problem via numerical optimization algorithms.
Specifically, we design an RNN architecture as an inverse
solver based on the iterations of proximal gradient descent
optimization methods. In this approach, network bias becomes
backprojected data, network weights serve as an image domain
filter and non-linear activation function is chosen based on
prior information. We further adapt the RNN architecture to
image reconstruction problems by adding an additional layer
mapping and transforming the network into a recurrent auto-
encoder [9]. Unlike the method used in [15], our network
allows for unsupervised learning using data directly. As a
result, the performance of our DL based inverse solver is not
upper bounded by the quality of training images generated by
conventional methods.

Our DL based inverse solver is particularly suitable for
a class of image formation problems in which the forward
model is only partially known. Such problems can arise
due to simplifying assumptions, unknown parameters, and
uncertainties in the underlying physical/sensing process. The
ability to learn or refine forward models, hyper parameters
combined with unsupervised training approach establish our
recurrent auto-encoder suitable for real world applications. The
learned network reduces computation by requiring a smaller
number of layers than the number of iterations in standard
sparse coding.

Our approach is distinct from [8]–[10] in which DL is
utilized to learn parameters and network weights based on
random model initialization. Instead, we use physics based
modelling as initialization for an auto-encoder structure where
the forward model is restricted to be the same in the encoder
and the decoder, perform unsupervised training with raw data,
and obtain image estimate after the encoder.

To demonstrate the applicability and performance of DL
based imaging, we consider passive synthetic aperture radar
(SAR) image formation problem. Passive SAR uses existing
sources of opportunity to illuminate a scene of interest and
deploys passive receivers to measure the backscattered signals
[16]–[20]. Using illuminators of opportunity results in many
challenges such as limited bandwidth, non-ideal transmitted
waveforms, and uncertainty in knowledge of the transmit-
ter location and transmitted waveforms. Existing approaches
to the problem either make strong assumptions to reduce
dependence on the transmitter location [19], [21], assume
direct-line-of-sight to the transmitter [16], [17], [22], or are
computationally inefficient [23]. We demonstrate the power
of DL by developing a novel approach to passive SAR,
overcoming these shortcomings. Specifically, we do not as-
sume any knowledge of the transmitter location or properties
in image reconstruction and learn the forward model that
depends on these parameters. We then use the DL network
to learn the missing transmitter information which allows for
efficient reconstruction of arbitrary scenes. We demonstrate
that application of our method to passive SAR imaging results
in better background suppression, target localization, reduced
reconstruction error and higher image contrast than that of
ISTA or iterative hard thresholding algorithm (IHTA), requir-
ing less layers (or iterations) resulting in significantly reduced
computation.

The rest of the paper is organized as follows: in Section
II, we provide a brief overview of deep learning (DL). Next,
in Section III, we establish the connection between machine
learning and inverse problems in imaging and present opti-
mization based imaging. In Section IV we introduce the pas-
sive SAR imaging problem, address it within DL framework,
and discuss our network design choices and training details.
In Section VI, we demonstrate the performance of our method
with numerical results. Section VII concludes the paper.

II. DEEP LEARNING

Deep Learning falls into a class of machine learning meth-
ods known as representation learning. These methods excel in
extracting features from the data automatically, bypassing the
hand-crafting process of feature design. These algorithms are
characterized by a cascade of many “layers” of element-wise
non-linear operations. In the most general sense, such algo-
rithms are categorized as artificial neural networks (ANNs).
In order to extend Deep Learning applications to image
formation, we first give an overview of fundamental concepts
and building blocks of DL-based machine learning and ANNs.

We begin by introducing key concepts for DL, proceed
with a comparison of DL to conventional machine learning
methods, present some fundamental architectures of the frame-
work. In the next section, we discuss how to formulate inverse
problems in imaging in DL framework.

A. Fundamental Concepts

The cornerstone of the field of machine learning is the
perceptron classifier. This is a fundamental computation unit,
parameterized by a weight vector a ∈ CN and a bias term
b ∈ C. The operation of the perceptron is merely the projection
of the input vector f ∈ CN on a via dot product, summation
with the bias b, followed by the unit step function σ. The
perceptron, as a classifier, decomposes the input space into
two decision regions lying above and below the hyperplane
with the normal vector a, displaced from origin by b units.
The class assignment is performed by the unit step function
σ on the output a · f + b.

An arbitrary choice of the non-linear function σ general-
izes the concept of perceptron to an artificial neuron. The
function σ is referred to as the activation function. Parallel
implementation of multiple neurons constitute a processing
block, namely a layer [24]. A layer is an an affine mapping
of the input f ∈ Ωf ⊆ CN , followed by an elementwise non-
linear warping:

f̃ = σ(Af + b) (1)

where rows of the matrix A ∈ CM×N are weight vectors of
the underlying neurons, and b ∈ CM is vector of correspond-
ing biases. The output f̃ ∈ CM is called a representation of
the input f . A representations lies in a “feature space”, the
space resulting from the transformation of the input space Ωf

by the layer. Serial connection of multiple layers constitutes a
“model” or a network “architecture” to perform classification
or regression on the input data.
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B. Conventional Machine Learning vs Deep Learning

The general task of machine learning is to estimate model
parameters to produce descriptive representations and to iden-
tify decision regions at the output space. The parameter esti-
mation procedure is referred to as learning, or training of the
model. In principle, machine learning methods are inductive,
i.e., the learning takes place by experience or examples. The
learning procedure can be either supervised or unsupervised
depending on whether the training set includes ground truths
or not.

In conventional machine learning, most methods are 2-
layered architectures as shown in Fig. 1(a). The input to the
first layer is a hand-crafted feature. The result of the first
layer is a new representation in a feature space. The “output
layer” maps this new representation to decision regions. It
is important to note that in conventional machine learning,
features are hand-crafted from raw data specific to a problem
in hand. Therefore, feature engineering is a critical part of
classifier design.

Unlike conventional machine learning, DL does not require
feature engineering. In DL, useful features can be learned
directly from raw data, d ∈ Ω ⊆ CN , in a hierarchical manner.
This is achieved by expanding the conventional shallow model
into a chain of many processing units by inserting layers in
between the standard 2-layer structure as shown in Fig. 1(b).
These new layers are referred to as “hidden” layers.

(a)

(b)

Fig. 1. (a) Conventional machine learning vs. (b) Deep Neural Network with
additional layers between input and output layers. In conventional machine
learning the input f is a hand-crafted feature whereas in Deep Learning it is
raw data d.

C. Forward Propagation in DL

With the additional layers, the model produces a new
representation at each layer of the output generated at the
previous layer, resulting in a hierarchical representation of
the input. As a result, the input is represented in increasingly
abstract feature spaces. The output at the end of the kth layer
can be written as:

hk = σ(Akhk−1 + bk). (2)

Let φ : ΩL → Γ be a mapping from the feature space ΩL
defined by the range of the hidden layer to the output space
Γ. Redefining d = [d, 1]T and Wk = [Ak, bk], k = 0, ..., L,
then, network output g∗ ∈ Γ is given by:

g∗ = φ
(
WLσ(WL−1...σ(W1σ(W0d)

))
. (3)

The process of mapping the raw data d ∈ Ω to the output
space, Γ, is referred to as the forward propagation. As a direct

consequence of composition of transformations performed
by successive layers, deep networks gain more expressive
power and the ability to represent more complex mappings.
These sophisticated transformations are generally explained in
terms of the universal approximation theorem or probabilistic
inference, and can theoretically approximate any function [25].
The weights provide a linear parametrization of the network
operation and the activation function introduces the capacity
to approximate complex, non-linear mappings between input
and output spaces.

The mapping of the output layer φ(·) is chosen in a problem-
specific manner. This establishes DL as a goal driven method.
Network parameters are learned to construct feature spaces
that are relevant to a specific problem in hand.

D. Learning in DL
Let L(θ) : Ω → Y be the mapping between the input and

output spaces where

L(θ)[d] = g∗ θ = {Wk}Lk=1. (4)

L(θ) is referred to as the network operator, with network
parameters θ. In DL, learning involves estimating θ with
respect to a figure of merit given a set of training data
{d1,d2, · · · ,dT } and corresponding ground truth data set
G = {g1,g2 · · · ,gT }. A commonly used figure of merit is
the `2 error,

JG[θ] =
1

2T

T∑
n=1

‖L(θ)[dn]− gn‖22. (5)

The minimization of JG[θ] is typically a high-dimensional
and non-convex optimization problem, often with many saddle
points and local minima [1], [24]. Most widely used approach
in addressing this optimization problem is the gradient descent
method producing the following updates:

θl+1 = θl − ηl∇θJG[θl], (6)

where l denotes the lth update and ηl is called the learning
rate. The method of updating the network parameters with the
gradient descent principle is called backpropagation, which is
the fundamental way of learning in deep networks.

The method by which the gradient term, ∇θJG[θk], is com-
puted over the training data leads to different parameter update
schemes. For large training sets, the most common update
method is the stochastic gradient descent(SGD). In SGD, at
each iteration, the update term is estimated by averaging the
computed values of the gradient over a small subset of the
training set. Going over the entire training set in computing
updates completes an “epoch”. Alternative methods to SGD
are most notably the batch and on-line updates. The batch
update averages the computed gradients over the entire training
set, hence performs one update per epoch, and on-line update
computes the gradient for each datum and updates weights of
the model sequentially. More sophisticated optimizers that are
variants of SGD such as, AdaGrad [26], Adam [27], RMSProp
[28], and forward-backward splitting optimizers [29], as well
as second order optimization methods [30] have been proposed
in the literature for backpropagation to improve training deep
networks.
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E. Generic Architectures in ANNs

Several different network architectures have been developed
through the development of ANN in DL literature. Some of
the core architectures can be listed as deep feedforward neural
networks (FFNNs), convolutional neural networks (CNNs),
recurrent neural networks (RNN) and auto-encoders [1], [2],
[24].

In FFNNs, each layer is an independent processor, hence
parameterized uniquely. Therefore, at each layer a different
transformation is learned. CNNs employ Toeplitz matrices,
hence convolutions, as network weights. They are suitable to
model sparse, localized interactions and are widely used in
computer vision tasks. RNNs are highly structured forms of
deep FFNNs, in which all layers perform an identical trans-
formation. These identical transformations can be interpreted
as a recurring state update, in which each layer represents a
time step.

These basic architectures are used as building blocks of
more complex deep networks. One such class of architectures
is the auto-encoders. Auto-encoders consist of two compo-
nents, an encoder, and a decoder. Each component could be
any ANN architecture. The decoder block synthesizes the input
from the output of the encoder, and a desired representation
is extracted from the intermediate stage between the two
components. An encoder-decoder pair is learned from data in
an unsupervised manner.

III. DEEP LEARNING FOR INVERSE PROBLEMS IN
IMAGING

Deep Learning framework has been traditionally developed
for machine learning tasks. In this section, we introduce an
interpretation of inverse problems in imaging as machine
learning tasks and explore perspectives, concepts and tools
offered by DL in addressing imaging problems.

Inverse problems in imaging can be categorized into three
components: forward modeling, that is modeling the relation-
ship between the quantity of interest and measurements; inver-
sion, that is forming an image of the quantity of interest from
measurements; and finally design of algorithms for computa-
tionally efficient forward and inverse solvers. DL framework
may offer advantages and play an integral unifying role in
addressing all three components of imaging. Specifically, we
postulate that Deep Learning theory can be exploited for the
following key tasks: i) learn or refine forward models; ii)
develop image reconstruction methods for ill-posed inverse
problems; and iii) design computationally efficient algorithms.

A. Deep Network as a Forward Solver

In many inverse problems of imaging, forward modeling is
an art of compromise between accuracy and tractability. As a
result forward models often rely on simplifying assumptions,
approximations and include uncertainties. For example, in
many electromagnetic wave based imaging problems, it is not
computationally tractable to use Maxwell’s equation. Instead,
one would use wave equation and further simplify the underly-
ing non-linearity under Born or single scattering assumptions
to arrive at a linear model between quantity of interest and

physical measurements. In some problems, the resulting linear
model is further simplified under far-field approximations to
obtain the Radon transform. The resulting mathematically
idealized model may rely on simplified system, imaging and
medium parameters which may be at best approximate in
practice.

DL offers the possibility of estimating a non-linear for-
ward model, when forward model is implemented in forward
propagation. We can then interpret physical measurements as
representations of image/physical quantity of interest to be
learned in measurement space. Let

d = F [ρ] + noise (7)

where ρ : R × R → R+ ∪ {0} is the quantity of interest,
d : Rl → C denotes physical measurements, and F is the
forward model.

In conventional forward modeling F is often simplified
to a linear model and the observed measurements can be
interpreted as an output of a 2-layer network as in Fig. 1(a), in
which the input layer performs the linear operation governed
by F and the output layer is merely an identity operator or an
additive noise.

DL framework, on the other hand, suggests to increase the
number of layers and uses affine transformations followed
by a non-linearity in each layer as depicted in Fig. 1(b).
Inserting L-hidden layers results in the following non-linear
model between the quantity of interest ρ and measurements d:

d = σ̃(W̃Lσ̃(W̃L−1...σ̃(W̃1σ̃(W̃0[ρ])
))
. (8)

Given a set of training data {ρt1, ..., ρtT } and corresponding
measurements {dt1, ..., dtT }, we can then use DL’s backprop-
agation step to learn network parameters, {W̃k}k=L

k=0 . Since
this is a highly non-convex problem, we can choose to model
input layer by the linear model F to obtain a relatively good
initialization to the backpropagation algorithm.

B. Deep Network as an Inverse Solver

Inversion or image formation can be implemented as for-
ward propagation in DL framework. We can then interpret
inversion as a process of finding a desired representation of
the physical measurements in image space. This leads to a
formulation of image reconstruction as representation learning
in DL framework.

Given a linear forward model as in (7), we can imple-
ment conventional image reconstruction in two-steps involving
backprojection and filtering:

ρ∗ = K[d] := F†Q[d] (9)

where F† denotes the backprojection or adjoint operator and
Q is a filter that can be designed with respect to a variety of
criteria.

The backprojection-filtering operation in (9) has an analo-
gous interpretation to 2-layer conventional machine learning
in which the input layer comprises of backprojection and the
output layer comprises of filtering. Backprojection operator
produces a representation of measurements in the range of the
adjoint operator and filtering refines this representation with
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respect to a criterion such as suppressing singularities due to
noise or sharpening edges. 1

DL suggests to introduce multiple hidden layers between the
input and output layers in which each layer produces a new
representation progressively approaching to a desired image.
Mathematically, we can then express the reconstructed image
as follows:

ρ∗ = σ(WL+1σ(WL...σ(W1σ(W0[d])
))
. (10)

The critical advantage offered by Deep Learning framework
is the learning step, hence backpropagation. Given a set
of training data {ρt1, ..., ρtT } and corresponding measure-
ments {dt1, ..., dtT }, we can estimate network parameters,
{Wk}k=L+1

k=0 . Such an approach unifies the forward modeling
and inversion and can be regarded as a model-free inversion
method. However, since backpropagation algorithm is a high
dimensional, non-convex optimization problem, we can set
input layer weights as W0 = F† in Fig. 1(b) to initialize
optimization at a relatively good estimate. The output layer can
be a linear/non-linear filter chosen with respect to a criterion
such as noise suppression or detection of edges.

C. Bayesian and Optimization Inspired Deep Learning based
Imaging

A key question that arises is: how the network activation
function, σ, can be designed or chosen in using DL as an
inverse solver? We propose that σ can be chosen or designed
based on a priori information of the unknown image. Depend-
ing on the specific problem in hand, σ may be known and can
be specified entirely or a functional form of σ may be known
and its unknown parameters can be learned in backpropagation
along with the rest of the network parameters.

The role of activation function for promoting a priori
information can be understood by considering a Bayesian
formulation of the imaging problem and the solution of the
resulting optimization problem via numerical optimization
algorithms.

Choosing appropriate basis functions for the image and
data domains, we now replace ρ, d and F with their finite
dimensional versions of ρ ∈ RM , d ∈ CN and F ∈ CN×M ,
and consider the following constrained least-squares problem2:

ρ∗ = Argmin
ρ

1

2
‖Fρ− d‖22 + λΦ(ρ) (11)

where Φ is a regularization term promoting a priori informa-
tion on ρ and λ is a scalar trading-off between the data-fidelity
and prior information. While Gaussian prior models promote
analytic linear reconstruction methods, Bayesian problem for-
mulation along with numerical optimization algorithms allow
incorporation of more general, non-Gaussian priors and de-
velopment of non-linear reconstruction algorithms. One such
class of optimization algorithms is the forward-backward
splitting [31]. These algorithms consist of a gradient step

1The filtered-backprojection operator can be also interpreted as a 2-layer
network with the order of filtering and backprojection switched.

2Although many of the subsequent results can be extended to infinite-
dimensional spaces, we restrict ourselves to finite dimensional setting to avoid
technicalities for the rest of the paper.

over the smooth `2 data-fidelity term, called the forward step,
followed by a backward step by the scaled proximity operator
of the convex penalty Φ:

ρk+1 = PαλΦ((I− αFHF)ρk + αFHd) (12)

where ρk is the kth iterate, α is a properly chosen step size
of the gradient descent to ensure convergence and PαλΦ is the
proximity operator of αλΦ defined as [31]:

PαλΦ(ρ) = Argmin
y

1

2
‖ρ− y‖22 + αλΦ(y). (13)

When Φ is the indicator function for the convex set C, the
proximity operator reduces to the projection operator. As such,
proximal gradient decent algorithms are generalization of pro-
jection gradient descent algorithms. The proximity operators
exist for a handful of non-convex penalties, such as the l0 norm
penalty [32] under the condition that the minimizer of (13) is
unique. An extensive survey and table of proximity operators
for convex penalties can be found in [31].

Following the principles we lay out in Section III-B, we
view the deep structure and generation of sequence of rep-
resentations analogous to an iterative algorithm to solve an
optimization problem for a fixed number of iterations [8],
[10]. We unfold the iterations of (12) and design a DL inverse
solver based on the optimization algorithm in (12) in which
ρk iterates are now the representations produced at each layer,

Q = I− αFHF, b = αFHd, (14)

where Q is the weight matrix, and b is the bias vector of
the layers, and PαλΦ serves as the activation function of the
network. The bias vector b becomes the backprojected image
and the weight matrix Q is an image domain filter. Since the
parameters of the network are identical at each layer, the solver
for the optimization problem naturally takes the form of a
recurrent neural network. Fig. III-C illustrates the architecture
of the resulting RNN.

Clearly, the Bayesian problem formulation and proximal
gradient descent algorithms inspire DL based solvers and
provide insightful interpretations of network parameters. One
of the conditions for such an interpretation to hold is that the
penalty function Φ must have a closed form, element-wise
proximity operator. Nevertheless, we can modify/approximate
proximity operators to satisfy such a condition or to achieve
certain objectives. We can further relax network structure and
learn different image domain filters, backprojection operators
and different step sizes, α, at each layer as shown in Fig. III-C.

The coupling of DL and optimization frameworks for image
reconstruction offers advantages to both approaches. DL offers
a new framework for simultaneous image reconstruction and
estimation of the underlying unknown parameters. In DL
framework, the minimization alternates between different vari-
ables, namely the unknown image and network parameters, by
alternating between forward propagation and backpropagation.
In optimization framework, on the other hand, the minimiza-
tion typically alternates between different variables at every
iteration. In DL framework, backpropagation improves the
performance of a task specific forward propagation, promoting
DL as a task driven optimization. Given the interpretation of
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Pα1λΦ(·) Pα2λΦ(·) PαLλΦ(·)ρ0
Q

d

FH

ρ1
Q

d

FH

· · · ρL−1
Q

d

FH

ρ∗

Fig. 2. The recurrent network architecture. The linear stages Q and b = FHd are represented as arrows. The non-linear activation functions are represented
as boxes. At each layer, the linear gradient descent step is followed by the element-wise proximity operator with parameter αλ shown in equation (12). Note
that ρ0 = 0 conventionally.

the underlying network parameters provided by the Bayesian
approach and optimization algorithms, DL can address imag-
ing problems in which complete knowledge of the forward
model or a priori information is not available. The network
activation functions can be viewed as non-Gaussian priors
for inference with deep models, whereby representations get
warped to new feature spaces between layers. Bayesian point
of view provides valuable perspective on how to determine
the choice of activation function for deep networks for image
reconstruction tasks.

IV. PASSIVE SYNTHETIC APERTURE IMAGING

In this section, we introduce the passive synthetic aperture
imaging problem and in the subsequent section demonstrate
the applications of the methods introduced in Section III for
passive synthetic aperture radar imaging.

A passive SAR system uses transmitters of opportunity as an
illuminator and a moving receiver to image a scene of interest.
Passive radar has been the subject of intense research in recent
years due to proliferation of transmitters of opportunity and
other advantages offered by passive systems, such as efficient
use of electromagnetic spectrum, increased stealth capability,
reduced cost and deployment flexibility among others. For an
account of recent work on passive radar, see [16]–[18], [20]–
[23], [33]–[37].

At a system level, passive imaging methods can be broadly
categorized into two classes: passive coherent location (PCL)
and interferometric passive imaging. PCL requires two anten-
nas at each receiver location, one directed to a transmitter of
opportunity and another one directed to the scene of interest.
The signal received directly from the transmitter of opportunity
is used to backproject the signal scattered from the scene
via matched filtering. This method requires two antennas at
each receiver location, direct line-of-sight to the transmitter
of opportunity and high signal to noise ratio (SNR) for the
signal received directly from the transmitter. An alternative
to PCL is the interferometric passive imaging. This method
uses two or more sufficiently far apart receivers deployed
on the same or different platforms. The signals at different
receiver locations are correlated and backprojected based on
time or frequency difference of arrival to form an image
of the scene [19], [21], [37]. The latter technique does not
require direct-line-of-sight to a transmitter, high SNR, or the
knowledge of transmitter location. However, it is limited to
imaging widely separated point scatterers. More recently, an
alternative method based on low-rank matrix recovery using

interferometric measurements has been developed [23]. How-
ever, computational requirements of this method precludes its
applicability in reconstructing realistic sized images.

In the rest of this section, we formulate a passive SAR
imaging method based on DL that is neither PCL nor interfer-
ometric in nature. We assume that a transmitter of opportunity
illuminates a scene of interest. Neither the location of the
transmitter nor the transmitted waveform are known a priori.
A single antenna receives scattered signal from the scene as
it moves along an aperture. In such a set-up, an image of the
scene cannot be formed by neither classic bistatic imaging
techniques [19] nor PCL or interferometric techniques as the
forward model is not fully known. Our objective is to address
the image reconstruction in the DL framework introduced in
Section III.

We now describe the SAR received signal model and DL
based SAR image reconstruction method. In Section VI, we
present numerical simulations to demonstrate the performance
of DL based SAR imaging.

We reserve the variables x and z to denote the location
of scatterers in R3. Let x = [x1, x2] ∈ R2 denote the two-
dimensional position of a scatterer on the ground plane and
ψ : R2 → R be the ground topography. Then, a scatterer is
located at x = [x, ψ(x)] ∈ R3. Let ρ(x) denote the reflectivity
of the scene.

Using scalar wave equation and under the Born approxima-
tion, we can model the received signal d as follows [19]:

d(ω, s) ≈ F [ρ](ω, s) :=

∫
e−i ωc0

R(s,x)A(ω, s,x)ρ(x)dx

(15)
where s ∈ [s1, s2] is the slow-time variable parametrizing
the location of a moving antenna, ω ∈ [ω1, ω2] denotes the
fast-time temporal frequency, c0 denotes the speed of light in
free-space and A(ω, s,x) is a slow-varying function of ω that
depends on transmitted waveforms, antenna beam patterns and
geometric spreading factors. R(s,x) is the bistatic range given
by

R(s,x) = |γT − x|+ |γR(s)− x| (16)

where γR(s) and γT denote the receiver and transmitter
locations, respectively. Note that the transmitter is stationary,
but its location γT is not known, neither is the transmitted
waveforms nor the transmitted antenna beam patterns. As
a result the forward model F is only partially known. If
the forward model F is known, a bistatic SAR image with
good geometric delity can be formed by a two-layer filtered-
backprojection type operation [19].
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V. DL BASED PASSIVE SAR IMAGE FORMATION

In this section, we formulate passive SAR image formation
in DL framework and describe the network architecture and
training, forward propagation and backpropagation. In each
of these topics, we discuss network properties specific to the
passive radar image reconstruction.

A. Network Architecture and Training

We now consider the finite dimensional versions of ρ →
ρ ∈ RM , d → d ∈ CN and F → F ∈ CN×M . We
implement two L−layered RNNs mimicking two proximal
gradient methods in forward propagation, namely iterative
hard thresholding algorithm (IHTA) and iterative shrinkage
thresholding algorithm (ISTA) and choose the network ac-
tivation functions based on the proximity operators of the
`0 and `1 norm penalties. In such a network, the weight
matrix and bias are fixed across all layers. The bias has the
interpretation of the backprojected received signal and the
weight has the interpretation of an image domain filter when
the reconstruction is formulated as an optimization problem
and addressed by proximal gradient descent type algorithms.
The proximity operator of the optimization serves as the
network’s activation function. The number of layers, L, in the
network simply corresponds to the number of iterations in the
numerical optimization.

A common approach in DL for training deep networks is
by supervised learning using a training set with ground truth
information. However, in the context of image reconstruc-
tion, SAR images with ground truth information may not be
available. Even if such as set is available, the performance
of the DL based inverse solver would be upper bounded by
the quality of reconstructed SAR images in the training set.
Therefore, we choose an unsupervised learning for DL based
image reconstruction and estimate network parameters from a
set of training data containing solely physical measurements,
{d1, ...,dT }. Such an unsupervised learning is achieved by
inserting an additional linear stage after the RNN to synthesize
measurements from the image estimate and comparing the
actual measurements with the synthesized measurements by
means of a mismatch function. This linear stage is naturally the
SAR forward projection model. Thus, our DL inverse solver
becomes an auto-encoder with SAR forward model serving
as the decoder and the RNN serving as the encoder. Fig.
V-A depicts the architecture of our auto-encoder network. The
auto-encoder refines the unknown image domain filter Q and
forward model F so that the measurements synthesized from
the reconstructed image match the true physical measurements,
driving the RNN to generate more accurate images.

In addition to F and Q, we also learn τ , the parameter
associated with the network activation function, by mini-
mizing the following functional using a training data set
D = {d1, ...,dT }:

JD[F,Q, τ ] =
1

T

T∑
n=1

`(Fρ∗n(F,Q, τ),dn) (17)

where ρ∗n is the image estimate produced by the forward prop-
agation using the training data dn and ` is an appropriately

Fig. 3. The Auto-Encoder architecture for SAR image reconstruction. The
encoder is an RNN with network parameters F,Q and τ producing a
representation, i.e., an image ρ∗

n. The decoder is the forward model F. `
denotes a mismatch function between the synthesized measurement Fρ∗

n and
actual measurement dn. This architecture allows an unsupervised learning
mechanism for the network parameters.

chosen mismatch function. Note that the loss function in (17)
can be further enhanced by including appropriate constraints
on the network parameters. Such an unsupervised learning
approach establishes our network suitable for real world
applications, as the learning is performed using a mismatch
function defined on the measurement space without the need
for ground truth SAR images.

While we have discussed the general network and training
scheme for passive SAR imaging, there are several design
choices and specific network properties that impact the net-
work performance. In the following subsections, we present
the details of the RNN, network derivatives for SGD based
backpropagation and justifications for the design choices.

B. Forward Propagation for Passive SAR

A key component of the RNN network that needs to be
determined is the domain of representations, ρk, and the
encoder output, ρ∗. The entries of scene reflectivity ρ are
non-negative real-valued numbers. Yet the optimization is per-
formed in the complex domain with complex valued iterates.
Given the limited number of layers in the network architecture,
and desire to interpret the output of each layer as a visual
representation of the scene, we form the representations by
taking the absolute values of the complex valued iterates.

Finally, using the proximity operators of `1 and `0 penalties
[31], [32], we determine the network activation functions as

σ1
τ (ρ) = max(|ρ| − τ, 0) (18)
σ0
τ (ρ) = max(|ρ| − τ0.5, 0) + (1− c)τ0.5u(|ρ| − τ0.5)

where c > 0 is a small constant in the order of 1e − 5, and
the superscripts 1 and 0 are associated with the `1 and `0
norm penalties, respectively. Note that the constant c is set
to 0 in IHTA. However, in order to backpropagate threshold
derivatives in the `0 case, we set c to a small non-zero constant
(See Appendix A for details). Note that operations in (18) are
understood to be element wise.

By making every representation in the network an image
estimate, the linear mapping and thresholding by (18) can be
interpreted as an enhancement operation in which the image
estimate from the previous iterate is progressively enhanced
in forward propagation with the learned parameters Q and F
to better match the synthesized data to the true measurements.

Additionally, the scene reflectivity may be upper bounded
given the operating frequencies of the receiver and typical
scene refractive indices. Thus, without loss of generality, we



8

assume that the scene reflectivity varies between 0 and 1 and
normalize the final RNN output ρL, before projection onto the
data space as follows:

ρ∗ =
ρL

‖ρL‖∞
. (19)

This normalization of the final output enhances the effect of
learning in light of the expected range of reflectivity values in
the reconstructed image.

C. Backpropagation for Passive SAR

1) Incorporating Constraints into Learning: In (17), we
choose the mismatch function between Fρ∗n and dn as the `2
norm squared function. The standard approach in addressing
the resulting optimization problem is via the stochastic or
batch gradient descent. However, applying additive gradient
descent updates would alter the mathematical structures of F
and τ which we wish to preserve. Therefore, we constrain the
loss function, JD with the properties of these parameters and
modify it as follows:

J̃D(F,Q, τ) = JD(F,Q, τ) + iCF
(F) + iCτ (τ) (20)

where iCF
and iCτ are the indicator functions of sets CF and

Cτ for F and τ , respectively. The backpropagation is then
performed by projected gradient descent at each epoch and
the updates resulting in (6) is projected onto the feasible sets
as follows:

Fl+1 = PCF
(Fl − η∇FJD[θl]) (21)

τ l+1 = PCτ (τ l − η∂τJD[θl])

where θ = {F,Q, τ}, θl denotes the lth iterate in backpropa-
gation and PCF

and PCτ are the projection operators for the
set CF and Cτ , respectively.

The most significant structure we wish to impose is on F.
Under the small scene, short aperture and constant amplitude
assumptions, the SAR forward model becomes a matrix of
complex exponential entries with constant modulus. 3 The
feasible set CF then becomes the set of matrices with constant
modulus entries, which has a closed form projection operator.
This constraint leads to the following update equation for the
entries of F:

Fl+1 =
Fl − η∇FJD[θl]

|Fl − η∇FJD[θl]| (22)

where ∇F is the gradient with respect to F, | · | denotes
element-wise absolute value operation and κ stands for the
known or estimated transmitter power.

More elaborate constraints on F can be constructed if richer
a priori information on the transmitter location or transmitted
waveforms is available. For example, if approximate region
including the transmitter is known, the feasible set C can be
built to include complex values whose phase and amplitude
values are related to the locations of the cells in the region.

3This assumption is justified by having a broadband antenna at the receiver,
a narrowband transmitted waveform with a flat spectrum, small scene and short
aperture imaging geometry, all of which are likely to be satisfied for typical
passive imaging scenarios.

Similarly, transmitted waveform related a priori information
can be used to determine the phase and amplitude of complex
values in the feasible set C. The feasible set for the threshold
value τ is positive real numbers, yielding the trivial projection:

τ l+1 = max(τ l − η∇τJD[θl], 0). (23)

When approached from the optimization perspective, the
image domain filter, Q, is a high pass filter. Since F is
already constrained, we choose not to constrain Q. After being
initialized as a ramp filter in spatial domain, learning Q and
τ leads the network to a local minimum that ideally captures
a superior denoising effect. However, a priori information on
transmitted waveforms can be used to build specific constraints
on Q.

2) Network Derivatives: The update equation in (21) re-
quires computation of the gradient of the mismatch function
in (17) with respect to network parameters. We derive the
complex gradients with respect to Q and F using Wirtinger
calculus [38] and determine the update equations using the
theory of complex backpropagation [39].

Analytic expressions for the contribution of each layer to
the gradient of the mismatch function with respect to F and
Q as well as the derivative of ` with respect to τ are derived
in Appendix A using tensor algebra and Wirtinger derivatives.
We use the gradient contribution of the kth layer, (∇Q`)

k

and (∇F`)
k, and the definitions from (31), (32) in the BPTT

algorithm to compute the gradients of the loss function JD as
follows:

∇QJD[θl] =
1

T

T∑
n=1

L∑
k=1

(∇Q`(d
∗
n,dn))k

∣∣
θ=θl

(24)

∇FJD[θl] =
1

T

T∑
n=1

[
(d∗n − dn)ρ∗n

T +

L∑
k=1

(∇F`(d
∗
n,dn))k

]∣∣∣∣
θ=θl

∂τJD[θl] =
1

T

T∑
n=1

L∑
k=1

∑
i∈Ik
−(∇ρ∗

n
`(d∗n,dn))i

∣∣
θ=θl

where d∗ = Fρ∗(F,Q, τ), the subscript i denotes ith entry
of the vector ∇ρ∗

n
`(d∗n,dn) and Ik denotes the index set

for which |Qρk + αFHd| > τ . All terms are evaluated
at θl = {Fl,Ql, τ l}, where l denotes the backpropagation
update iteration. Note that the gradient expressions for the
`0 and `1 based constraints are identical up to a Dirac-
delta term. Nevertheless, the two algorithms produce different
results since the forward propagation steps are different. As
a result the two algorithms result in different data mismatch
and different backpropagation results.

D. Computational Complexity Analysis
The computational complexity of backpropagation with an-

alytically derived updates proves to be on comparable order to
those of original ISTA and IHTA with M number of unknowns
and N number of measurements.

Component ∇ρ∗
n
`(d∗n,dn) arising from data mismatch and

normalization steps is only computed once per sample at each
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epoch, resulting in O(M2)+O(NM) multiplications. At each
layer, for the Q and F derivatives in Eq. (31),(32), we have
in O(LM2) and O(NM) computations from Qρk and FHd
multiplication operations respectively. The M elements of
vector Qρk +αFHd are multiplied with the vectors (ρk−1)T

and d forming the M rows and columns of (∇Q`(d
∗
n,dn))k

and (∇F`(d
∗
n,dn))k, respectively. These operations require

O(LNM) and O(LM2) computations. For T training sam-
ples, and E epochs, the overall computational complexity of
backpropagation becomes O(ETLNM) +O(ETLM2). The
difference in computational complexity between DL-based
inversion and that of standard iterative reconstruction depends
on the ratio of ETL to the number of iterations in standard
method.

VI. NUMERICAL SIMULATIONS

We perform numerical simulations to demonstrate the per-
formance of DL based passive SAR imaging. We consider
a typical passive SAR scenario and discuss how DL based
approach can improve the results over conventional optimiza-
tion methods. We consider the case in which the location
or the look direction of the transmitter of opportunity is
not known. We assess the performance of the DL-based
approach with respect to two different figures of merit: image
domain mismatch to ground truth and contrast of reconstructed
image. Additionally, we consider the effects of regularization
parameter initialization, network depth, and training data size
in reconstructed images.

A. Experimental Set-up

1) Scene and Imaging Parameters: We assume isotropic
transmit and receive antennas, and simulate a transmitted
waveform with a flat spectrum with bandwidth and center
frequency of 8MHz and 760MHz, respectively. The trans-
mitted waveform parameters and properties correspond to a
DVB-T signal, a commonly used illuminator of opportunity
[18]. We create a flat scene that is 620 × 620m2 discretized
into 31 × 31 pixels with the origin of the coordinate system
located at the center of the scene at pixel (16, 16). This
results in each pixel having 20m range resolution for mono-
static SAR operating with 8MHz bandwidth. The receiver
antenna traverses a circular trajectory, defined as γR(s) =
[7 cos(s), 7 sin(s), 6.5]km and the transmitter is fixed and
located at γT = [11.2, 11.2, 6.5]km. The received signal is
generated using the bistatic forward model given in (15) with
A ≡ 1. The aperture is sampled by discretizing the slow-
time variable into 400 uniform samples, and the bandwidth is
sampled by discretizing the fast-time variable into 100 uniform
samples. This simulation configuration is displayed in Fig.
4(b).

2) Training Data: We generate a training set consisting
of sparse scenes with a single extended target that varies in
rectangular shape and location. The length and width of each
rectangular target is chosen randomly and lies in the range
[1, 6] × [1, 6] pixels. The targets are placed randomly within
the range of [3, 28] × [3, 28] pixels. With this approach, the
locations and size of the targets in our training set are all

(a) (b)

Fig. 4. Figs. 4(a), 4(b) display image phantom used to generate the test
data set, and the imaging geometry used in simulations, respectively. The
transmitter is placed approximately 15km distanced from the center of the
scene. The test set is generated by adding multiple realizations of Gaussian
noise on the measurements obtained from the phantom scene.

realizations from the same uniform distribution. The possible
training images correspond to scenes with point and extended
targets. We then generate SAR data for each image using the
full forward model described in Section VI-A1.

We envision a two-stage data collection protocol to collect
training and testing data for use with DL based passive SAR
imaging. In the first stage an airborne receiver collects test data
from a scene of interest. In the second stage, several reflectors
are placed in the scene to form either extended or point targets
and training data is collected under the same imaging geometry
as before.

Another protocol is to collect the training data set over
the course of an extended period during which temporary
structures may appear creating perturbations in the background
scene of interest. Note that neither the location nor the shape
of the foreground scatterers need to be known in order to use
the training data in our unsupervised training scheme.

3) Testing Data: While in the training process we create
and use a set of varying images to train the network and tune
the parameters, in testing we use data collected from a single
scene of interest. The scene of interest is displayed in Fig. 4(a)
and backscattered field is generated by the bistatic forward
operator in Section VI-A1. The data includes backscattered
field embedded in additive white Gaussian noise at an SNR
of 50dB. 20 different realizations of noise is used to form a
set of 20 images. The figures of merit are averaged over 20
results to obtain a statistical evaluation.

4) Network Architecture, Initialization and Learning: We
use 16 layers for the RNN encoder with the activation func-
tions discussed in Section V. Training is performed with
projected batch gradient descent in which the gradient is
averaged over all training samples before being projected onto
the sets defined by constraints described in Section IV. In our
simulations, the model was trained for 7 epochs at which point,
in most cases, we observed the backpropagation converged.
To help ensure convergence of the training procedure, we
down scale the step size of gradient descent at a rate of
ηl = ηl/(1 + l) where l = 0, 1, . . . indexes the epoch. In
our simulations we tune the learning rates differently for each
parameter as 1e− 9 for Q, 1e− 5 for F, and 1e− 14 for τ .

Unlike typical deep learning applications where parameters
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are initialized randomly, in our method, the parameters are
initialized with the partially known forward model. Since the
transmitter location is unknown in passive SAR imaging, the
parameter F is initialized with the finite dimensional version
of the operator F , in which the range term is |γR(s) −
x| + φT (s,x). When the location of the transmitter is not
known, we set φT (s,x) = 0. When partial knowledge about
the transmitter location is available, φT (s,x) can be chosen
accordingly. We use the initial value of F to initialize the filter
parameter Q and bias b according to (14), where α = 1e−6,
upper bounded by the largest eigenvalue of FHF. This choice
of α holds for system parameters discussed above, and in
the case of ISTA and IHTA ensures monotonic descent of
the objective function. The α parameter is kept fixed in all
experiments as it is learned within the process of learning Q
and F.

5) Figures of Merit: In training, we use the normalized `2
error in data domain at each epoch as a stopping criterion:

Ld(ρ∗l) =
‖Fl(ρ∗)l − d‖22

‖d‖22
(25)

where (ρ∗)l is the image reconstructed by the encoder in epoch
l, Fl is the learned forward model at epoch l, and d is the
input data. Training is terminated once (25) does not decrease
in average. Final learned parameters are set from the epoch
that produced the lowest average Ld over the training set.

To quantify the performance of DL based image reconstruc-
tion, we consider two figures of merit: normalized `2 error in
image domain Lρ with respect to the ground truth, and contrast
measure Cρ defined as:

Lρ(ρ∗) =
‖ρ∗ − ρ‖22
‖ρ‖22

, Cρ(ρ∗) =
|E[ρ∗f ]− E[ρ∗b ]|2

var[ρ∗b]
(26)

where ρ∗ denotes the reconstructed image, ρ∗f and ρ∗b are
the foreground and background images, respectively, E is
statistical expectation, and var is statistical variance.

In our experiments, we investigate the impact of initializa-
tion of λ parameter, the size of the training set and the number
of layers of the network. The images reconstructed by 16-
layer network are compared to the results of ISTA and IHTA
obtained after 100 iterations.

B. Results

In this section we present and compare the performance of
DL based passive SAR to those of standard IHTA and ISTA.
We demonstrate that the learned networks produce higher
quality imagery with far fewer iterations.

1) Impact of λ Initialization: We train the proposed 16-
layer network with initial regularization parameters varying as
λ = 30, 45, 60, 75, 90, 105, 120, and plot the results obtained
for different initial λ value for the figure of merits given in
(26), in the left and right subfigures of Fig. 5, respectively.

Fig. 6 shows reconstructed images using λ values that result
in the maximum image contrast for the 16-layer `0 and `1-
DL, and for 100 iterations of the corresponding standard algo-
rithms. Visually it is clear that DL method yields significant
improvement in contrast, and comparable image domain `2
error at only 16 layers.

(a)

(b)

Fig. 5. Image domain `2 (a) error and contrast (b) for different values of λ
initialization produced by the 16-layer `0-DL (red) and `1-DL (blue) method,
generated after 7 epochs of training, and 100 iterations of standard IHTA
(magenta) and ISTA (black line). Contrast values are plotted in log scale.

In `0 regularized case, for both metrics we see that the DL
method outperforms the IHTA algorithm, specifically in terms
of background suppression and superior geometrically fidelity
of the target when observed in Fig. 6. For `1 regularized
case, compared to ISTA, DL based approach significantly
enhances the contrast measure of images, however, the inverse
correlation of `2 image domain error and contrast is lost,
as the `1-DL method yields a higher average `2 error over
the test set. This behavior can be attributed to significant
suppression of target pixels. Even though the background
scatterers are effectively suppressed to boost contrast measure,
the mean of foreground pixels is also considerably decreased
with the `1-DL method, causing the second moment in the
foreground to dominate the variance, resulting with an increase
in both contrast and `2 image error metrics simultaneously.
The improved geometric fidelity can be primarily explained by
the refinement of the forward model with learning, as F is the
component that determines where the target is placed via its
adjoint. Superior background suppression in DL based images
is a direct result of the learned threshold value and image
domain filter, which together serve as denoising operators on
representations in the network.

An empirical detail in setting the initial λ is preventing
strong suppression of pixel values in the first forward propa-
gation. A large initial threshold value would produce highly
sparse representations in the network, resulting with back-
propagating considerably smaller magnitudes for parameter
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(a) (b) (c) (d)

Fig. 6. Images generated using the λ values that provide the maximum reconstruction contrast for ISTA and IHTA inspired DL and the corresponding standard
algorithms for 100 iterations. (a) The image formed by the IHTA inspired DL network with λ = 30. (b) The image formed by standard IHTA with λ = 120.
(c) The image formed by ISTA inspired DL with λ = 120. (d) The image formed using standard ISTA with λ = 120.

updates. The improvement of DL over conventional methods
in such scenario diminishes significantly. In our experiments,
we observed λ ≥ 150 to be the point where the performance
deteriorates for our configuration, hence we limit the range of
λ upto 120 in our experiments.

2) Impact of Training Set Size: In this set of experiments
we fix λ = 30 and train our model with varying training set
sizes of T = 25, 50, 75, 100, 125. In Fig. 7(a), we plot the
performance measured by the figure of merits given in (26)
vs. the training set size. Our results indicate that increasing
the training set size from 25 up to 125 does not provide any
significant improvement in either metric. The reason for this
negligible effect on performance can be primarily explained by
our initialization. As the network is already initialized with a
known component of the forward model, the physical process
mapping the scene to data is established to some degree. Our
experiment suggests that despite the size of the training set,
backpropagation converges to a very similar local minimizer.

A concern with small training sets is the risk of overfitting
parameters. Especially with our protocol discussed in Section
VI-A2, the training data is likely to be correlated with test
data. While such correlation between training and testing is
most likely unavoidable in imaging problems, our experiment
suggests that this is not a problem. Furthermore, correlation
may lead to benefits such as mitigating the impact of using a
larger training set, hence reduce the computational complexity
of training significantly.

3) Effect of Network Depth: Finally, we investigate the
impact of number of layers L in designing the deep network
for DL based reconstruction. We measure performance quality
with our two figures of merit and plot the results obtained from
models trained with L = 4, 8, 12, 16, 20, 24, 28, 32 layers,
trained with 50 samples, keeping λ = 30 for both cases. Figure
7(b) displays the image domain mismatch and contrast metrics
vs. L in left axis and right axis of the plot respectively.

With Figure 7(b), we clearly observe that there is a trade-
off between reconstruction error and image contrast as number
of layers increase. This behavior can best be explained by
the increase number of filtering and thresholding operations
applied to the backprojected input data with more layers. With
more successive denoising operations in the network, compo-
nents, such as the corners of the target become more prone

(a)

(b)

Fig. 7. The reconstruction error (left axis) and contrast (right axis) vs. number
of training samples in (a), vs. number of layers in (b) for `0-DL and `1-DL
methods. In both figures, image domain error and contrast curves for `0-DL
are in red and magenta, for `1-DL are in cyan and blue respectively.

to suppression. Background suppression is also enhanced with
increased layers which yields images with superior contrast.
Furthermore, an increase in layers suggests that derivatives
are summed over more stages with BPTT algorithm, this
accelerates learning of Q and τ more than F, since the forward
model is subject to a unit modulus constraint. We suspect
this causes more target suppression effects in the final image
estimate.

As the number of layers decrease, the reconstruction error
decreases due to superior matching of the target. Since there
is better match of large pixel values there is a decrease in
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the mismatch error, however background suppression is less
effective, limiting the contrast performance. Therefore, the
number of layers serves as a tunable hyper-parameter to de-
termine the trade-off between target visualization, background
suppression, and computational complexity.

VII. CONCLUSION

We present a novel deep learning based approach to inverse
problems in imaging and demonstrate its application in passive
SAR imaging.

We review basic concepts and tools in DL and consider
forward modeling and inversion for imaging in DL frame-
work. In the same way DL extends conventional machine
learning, we extend conventional forward modeling and im-
age reconstruction by inserting additional layers in between
conventional two-layer forward and inverse solvers. DL based
forward modeling is capable of capturing non-linearities be-
tween physical measurements and quantity of interest more
accurately than its conventional linear counterparts. Similarly,
we extend the conventional two-layer image reconstruction
method by inserting additional hidden layers in between back-
projection and filtering. We motivate the choice of network
activation function from a Bayesian formulation of image
reconstruction with non-Gaussian prior models and associated
numerical optimization algorithms. Specically, we design a
RNN architecture as an inverse solver based on the iterations
of proximal gradient descent optimization methods. We further
adapt the RNN architecture to image reconstruction problems
by adding an additional layer transforming the network into
a recurrent auto-encoder. Our DL based inverse solver is
particularly suitable for a class of image formation problems in
which the forward model is only partially known. The ability
to learn forward models, hyper parameters combined with
unsupervised training approach establish our recurrent auto-
encoder suitable for real world applications.

Unlike existing methods for passive imaging, our approach
only requires a single receiver and can image arbitrary scenes
with no knowledge of the transmitter location or transmitted
waveform, making our method ideal for contested environ-
ments. We initialize the network with the partially known
forward operator, providing a good initialization for the highly
non-convex training optimization problem. With unsupervised
training, the forward model and image filters are refined to
compensate for the missing phase information, which drives
the model to form more accurate imagery in forward propaga-
tion, foregoing the performance of limitations of conventional
imaging algorithms. We provide extensive numerical simula-
tions to demonstrate the power of the DL based approach using
networks based on network activation functions derived from
`1 and `0 prior models. Our experiments show that the learned
network reconstructs images with better geometric fidelity,
higher contrast and reduced reconstruction error, requiring
significantly fewer iterations than those of conventional ISTA
and IHTA. Additionally, we show that the DL based method
is comparable in terms of complexity to running conventional
least-squares based optimization problems for a large number
of iterations.
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APPENDIX

A. Backpropagation Derivatives

We compute the gradient contributions (∇F`)
k, (∇Q`)

k

from kth layer of the network to sum over k with the backprop-
agation through time(BPTT) algorithm, and ∂τ `, for update
equations (6). Due to having real valued representations such
that ρk ∈ RM , and ρ̄∗ = ρ∗ the complex backpropagation
equation becomes:

∂`(d∗,d)

∂Q
=

∂ρ∗

∂Q

(
FT (d̄∗ − d̄) + FH(d∗ − d)

)
(27)

∂`(d∗,d)

∂F
=

∂ρ∗

∂F

(
FT (d̄∗ − d̄) + FH(d∗ − d)

)
+
∂F

∂F
ρ∗(d̄∗ − d̄)

∂`(d∗,d)

∂τ
=

∂ρ∗

∂τ

(
FT (d̄∗ − d̄) + FH(d∗ − d)

)
From BPTT algorithm, derivatives of the normalized image
output ρ∗ from equation (27) can be written as:

∂`(d∗,d)

∂θ
=

(
L∑
i=1

∂ρk

∂θ

)
∇ρ∗`(d∗,d) (28)

where θ is a surrogate for network parameters {Q,F, τ}, ρk
is the representation at the kth layer, and

∇ρ∗`(d∗,d) =

Å
− 1

‖ρL‖2∞
∂‖ρL‖∞
∂ρL

ρL
T

+
1

‖ρL‖∞
IM×M

ã
×2 Re{FH(d∗ − d)} (29)

The first term of the multiplication is derived from the normal-
ization derivative ∂ρ∗

∂ρL
. Denoting the argument of the threshold

functions as fk+1 = |Qρk+αF|, we have that ∂ρ
k

∂θ = ∂fk

∂θ
∂ρk

∂fk
.

∂ρk

∂fk
is merely the derivative of the thresholding function

PαλΦ(·), which equals a diagonal matrix with entries 1 at
indexes that fki > τ , and equals 0 otherwise.

1) Q-Gradient: Letting fki = (zki
¯(zki ))

1
2 , we have ∂fki

∂Q =
∂zki
∂Q

∂fki
∂zk
i

, where zki = Qiρ
k + α(FH)id, i subscript denoting

the ith row of matrices Q and FH . Since ∂ρk

∂fk
is merely a

diagonal matrix with diagonal elements {0, 1}, such that it
equals 1 if fki > τ , its essentially a selection matrix for
the entries of ∇ρ∗`, suppressing indexes that fall under the
threshold. Following with a tensor-vector multiplication, the
derivative becomes:

∂`(d∗,d)

∂Q
=

L∑
k=1

∑
i=I

fk

∂fki
∂Q

(∇ρ∗`)i (30)

where Ifk is the set of indices that fki > τ is satisfied. For each
k = 1, · · ·L, from the definition of complex gradient operator,
for each row i = 1, · · ·M we obtain:

(∇Q`)
k
i,: =

(∇ρ∗`)i
2

Qiρ
k + αFHi d

|Qiρk + αFHi d| (ρ
k−1)T (31)

if |Qiρ
k + αFHi d| > τ and 0’s everywhere else.

2) F-Derivative: For the second expression from equation
(27), we obtain

(
∂F
∂Fρ

∗) (d̄∗ − d̄) = (d̄∗ − d̄)ρ∗T . The first
term in equation (27) for F is identical to Q-derivative in
equation (30) except for the variable at differentiation of fk.
Following the same steps as in differentiation with respect to
Q, for each row i = 1, · · ·M , we obtain:

(∇F`)
k
:,i =

α(∇ρ∗`)i
2

(Qiρk + αFHi d)

|Qiρk + αFHi d| d (32)

if |Qiρ
k + αFHi d| > τ and 0 everywhere else.

3) τ -Derivative: Since all inputs to activation function are
positive ρki = max(0, fki − τ), the derivative (∂ρ

k

∂τ )1×N will
equal −1 at indexes fki > τ and 0 otherwise. Then the from
kth layer derivative becomes:

∂1
τ ` =

L∑
k=1

∑
i∈Ik
−(∇ρ∗`)i (33)

where Ik is the set of indexes where |Qiρ
k + αFHi d| > τ ,

superscript 1 indicating the derivative for soft threshold func-
tion. For the hard thresholding operator with c = 0 in (18),
the τ derivative would have the index set Ik as indexes i
where |Qiρ

k + αFHi d| = τ . Due to double precision in
computations, exact equality is of negligible probability, which
would suppress the threshold derivative in backpropagation.
Once c = 1e− 5 is inserted into the function definition, the τ
derivative in hard thresholding becomes ∂0

τ ` = (1e− 5)∂1
τ `.


