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Abstract. We study a multiple measurement vector (MMV) approach to synthetic aperture radar (SAR) imaging of scenes
with direction dependent reflectivity and with polarization diverse measurements. The data are gathered by a moving transmit-
receive platform which probes the imaging scene with signals and records the backscattered waves. The unknown reflectivity is
represented by a matrix with row support corresponding to the location of the scatterers in the scene, and columns corresponding
to measurements gathered from different sub-apertures, or different polarization of the waves. The MMV methodology is used
to estimate the reflectivity matrix by inverting in an appropriate sense the linear system of equations that models the SAR
data. We obtain a resolution analysis of SAR imaging with MMV, which takes into account the sparsity of the imaging scene,
the separation of the scatterers and the diversity of the measurements. The results of the analysis are illustrated with some
numerical simulations.
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1. Introduction. Sparsity promoting optimization [26, 25, 22, 9, 11, 10, 12] is an important method-
ology for imaging applications where scenes that are sparse in some representation can be reconstructed
with high resolution. There is a large body of literature on this topic in synthetic aperture radar imaging
[4, 32, 28], sensor array imaging [13, 14, 7], medical imaging [30], astronomy [6], geophysics [33], and so on.

We are interested in the application of synthetic aperture radar (SAR) imaging, where a transmit-receive
antenna mounted on a moving platform probes an imaging scene with waves and records the scattered returns
[20, 17]. This is a particular inverse problem for the wave equation, where the waves propagate through
a homogeneous medium, back and forth between the platform and the imaging scene, and the unknown
is modeled as a two-dimensional reflectivity function of location on a known imaging surface. Most SAR
imaging is based on a linear model of the data, where the unknown reflectivity is represented by a collection
of independent point scatterers [17]. The image is then formed by inverting approximately this linear
relation, using filtered backprojection or matched filtering [17], also known as Kirchhoff migration [5]. Such
imaging is popular because it is robust to noise, it is simple and works well when the linear model is a good
approximation of the data. However, the resolution is limited by the extent of the aperture, the frequency
and the bandwidth of the probing signals emitted by the moving platform [20, 17]. The promise of sparsity
promoting optimization is that these resolution limits can be overcome when the unknown reflectivity has
sparse support [4, 32, 28].

The modeling of the reflectivity as a collection of points that scatter the waves isotropically may lead
to image artifacts. It is known that even if the scatterers are small, so that their support may be repre-
sented by a point and the single scattering approximation (i.e., the linear data model) can be used, their
reflectivity may depend on the frequency and the direction of illumination [2, Chapters 3, 5]. Moreover, the
scatterers have an effective polarization tensor that describes their response to different polarizations of the
probing electromagnetic waves [2, 3]. Thus, the reflectivity function depends on more variables than the two
dimensional location vector assumed in conventional SAR, and depending on how strong this dependence
is, the resulting images may be worse than expected. For example, a scatterer that reflects only within a
narrow cone of incident angles cannot be sensed over most of the synthetic aperture, so its reconstruction
with filtered backprojection will have low resolution. Direct application of sparse optimization methods does
not give good results either, because of the large systematic error in the linear data model that assumes a
scalar, constant reflectivity over the entire aperture.

SAR imaging of frequency-dependent reflectivities has been studied in [16, 35, 34], using either Doppler
effects, or data segmentation over frequency sub-bands. Data segmentation is a natural idea for imaging both
frequency and direction dependent reflectivities that are regular enough so that they can be approximated as
piecewise constant functions over properly chosen frequency sub-bands and cones of angles of incidence (i.e.,
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sub-apertures). Images can be obtained separately from each data segment, but the question is how to fuse
the information to achieve better resolution. The study in [8] uses the multiple measurement vector (MMV)
methodology [31, 15, 39], also known as simultaneously sparse approximation [38, 37], for this purpose.
The MMV framework fits here because the reflectivity is supported at the same locations in the imaging
scene, for each data set. Only the values of the reflectivity change. In the discrete setting, this means
that the unknown is represented by a matrix X with row support corresponding to the pixels in the image
that contain scatterers, and with columns corresponding to the different values of the reflectivity for each
frequency band and sub-aperture. The MMV methodology is used in [8] to reconstruct this unknown matrix
under the assumption of sparse row support.

In this paper we pursue the ideas in [8] further, by studying the resolution of the MMV reconstructions
and analyzing conditions under which the multiple views of the imaging scene improve the results. We also
discuss the application of the MMV methodology to SAR imaging with polarization diverse measurements.

The paper is organized as follows: We begin in section 2 with the theoretical results, stated for a general
linear system with unknown matrix X. They consist of a resolution theory of imaging with MMV, that
takes into account the separation of the points in the support of the reflectivity. We also show that if the
rows of X are almost orthogonal, we can expect better reconstructions than with sparsity promoting `1
optimization applied separately to each data set. This orthogonality condition may arise in SAR imaging,
as explained in section 3, in the context of imaging direction dependent reflectivities. SAR with polarization
diverse measurements is discussed in section 4. The proofs of the results are in section 5. We end with a
summary in section 6.

2. Theory. We state here our main results on the resolution of imaging with MMV. We begin in section
2.1 with a brief discussion on MMV, and then give the results in section 2.2.

We use throughout the following notation convention: Bold uppercase letters, as in X ∈ CNy×Nv denote
matrices, and bold lowercase letters denote vectors. We also use an arrow index, as in xj→ ∈ C1×Nv , to
distinguish the rows of X from its column vectors denoted by xj ∈ CNy×1.

2.1. Preliminaries. Consider a general linear model of a data matrix D ∈ CNr×Nv ,

GX = D, (2.1)

where the unknown matrix X ∈ CNy×Nv is mapped to D by a given sensing matrix G ∈ CNr×Ny . In the
context of SAR imaging, X represents the unknown reflectivity discretized∗ at Ny points {yj}1≤j≤Ny in
the imaging region Ω, a bounded set on a known surface. The matrix D is an aggregate of Nv data sets
or views, each consisting of Nr measurements of the wave field at the moving radar antenna. A column of
X, denoted generically by xv for 1 ≤ v ≤ Nv, represents the reflectivity for a given view, and it is mapped
to the corresponding column dv of D by the sensing matrix G. This G is the discretization of the kernel
of the linear integral operator that defines the single scattering (Born) approximation of the solution of the
wave equation, as described in section 3. Its entries are given by Green’s functions which model the wave
propagation between the imaging points in Ω and the locations of the antenna in the synthetic aperture.

When Nv = 1, the linear model (2.1) corresponds to the single measurement vector (SMV) problem,

Gx = d, (2.2)

with unknown vector x ∈ CNy×1 and data vector d ∈ CNr×1, where we dropped the column index 1. The
SMV problem has been studied extensively in the context of compressed sensing [26, 25, 22, 9, 11, 10, 12, 29]
for the undetermined case Nr � Ny. In particular, it is known [23, Corollary 1] that if†

‖x‖0 <
spark(G)

2
, (2.3)

where ‖x‖0 equals the number of nonzero entries in x, then (2.2) has a unique solution satisfying (2.3), given
by the minimizer of the combinatorial optimization problem

minimize ‖z‖0 subject to Gz = d. (2.4)

∗We assume that the Ny points define a fine mesh in Ω, so we can neglect errors due to scatterer locations off the mesh.
†Recall from [23] that spark(G) is the smallest number of linearly dependent columns of G.
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This result is generalized in [15, Theorem 2.4] to the MMV problem (2.1) for Nv > 1. It states that
when the number of nonzero rows in X, denoted by ‖X‖0, satisfies

‖X‖0 <
spark(G) + rank(D)− 1

2
, (2.5)

the linear system (2.1) has a unique solution satisfying (2.5), given by the minimizer of the combinatorial
optimization problem

minimize ‖Z‖0 subject to GZ = D. (2.6)

Thus, if the different data sets bring new information, so that D has large rank, the MMV problem is
uniquely solvable for less stringent conditions on the row support of X i.e., for less sparse imaging scenes.

The combinatorial problems (2.4) and (2.6) are not computationally tractable, so they are replaced by
convex relaxations. The minimizer of the convex problem

P1 : minimize ‖z‖1 subject to Gz = d, (2.7)

where ‖ · ‖1 is the `1 norm, is known to give the exact solution x of the SMV problem (2.2) under various
conditions satisfied by G and x, like the null space property [18], the restricted isometry property [10],
conditions based on the mutual coherence [24] and the cumulative coherence [36]. Relaxations of (2.6) of
the form

P1,q : minimize ‖Z‖1,q subject to GZ = D, (2.8)

are studied in [19, 31, 15, 27, 38, 37, 39] using the `1,q norm

‖Z‖1,q =

Ny∑
j=1

‖zj→‖q, (2.9)

defined by the sum of the `q norms of the rows of Z, for q ≥ 1. Conditions of recoverability of the solution X
of (2.1) by the minimizer of the convex optimization problem (2.8) are established in [15, Theorem 3.1] and
[38, Theorem 5.1]. However, there are no conclusive results that demonstrate the advantage of the MMV
formulation over the SMV one in the convex relaxation form, as discussed for example in [15, Section D],
[38, Section 5.2] and [39, Section 3.2].

These studies make no assumption on the structure of the unknown matrix X, except for sparsity of
its row support. As shown in section 3, we can write the problem of SAR imaging of direction dependent
reflectivities in MMV form, for an unknown matrixX that has almost orthogonal rows. With this assumption
on X we prove in the next section that the MMV formulation may have an advantage over SMV.

2.2. Resolution theory. Let us consider the following modification of the linear system (2.1)

DW = GX +W , (2.10)

which accounts for data DW ∈ CNr×Nv contaminated by the noise matrix W ∈ CNr×Nv . We estimate the
unknown X by the minimizer Xε of the convex problem

Pε
1,2 : minimize ‖Z‖1,2 subject to ‖GZ −DW ‖F ≤ ε, (2.11)

where ‖ · ‖F is the Frobenius norm and ε is a chosen tolerance, satisfying

‖W ‖F < ε. (2.12)

Denote by S ⊂ {1, . . . , Ny} the set of indexes of the nonzero rows of X, and suppose that its cardinality
|S| is small with respect to Ny. We call S the row support of X and let ΩS = {yq, q ∈ S} be the set of
locations in Ω that support the unknowns modeled by X. With our notation convention, the rows of X are
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denoted by xq→, and the columns of the sensing matrix G are denoted by gq. We use these vectors to define
the “multiple view interaction coefficient”

INv
= max

1≤j≤Ny

sup
v→∈C1×Nv

∑
q∈S\{n(j)}

|µ(gj , gq)||µ(v→,xq→)|, (2.13)

which is a measure of how the unknowns influence each other in imaging. The terms in (2.13) involve the
correlation of the columns of G,

µ(gj , gq) = 〈gj , gq〉 , 1 ≤ j, q ≤ Ny, (2.14)

where 〈gj , gq〉 = g?j gq is the Hermitian inner product, and ? denotes complex conjugate and transpose.
These columns are normalized, so that

‖gj‖2 = 〈gj , gj〉1/2
= 1, 1 ≤ j ≤ Ny, (2.15)

and we suppose that

|µ(gj , gq)| < 1, ∀ j 6= q, 1 ≤ j, q ≤ Ny. (2.16)

This assumption holds in the SAR imaging application and it allows us to quantify the distance between the
points in Ω using the semimetric

D : {1, . . . , Ny} × {1, . . . , Ny} → [0, 1], D(j, q) = 1− |µ(gj , gq)|. (2.17)

This semimetric was introduced in [7, Section 4] for the related problem of sensor array imaging of sparse
scenes, using `1 minimization. We will see in section 3 that |µ(gj , gq)| is approximately a function of yj−yq,
which peaks at the origin i.e., for yj = yq, and decreases monotonically in the vicinity of the peak. Thus,
points at small distance with respect to D are also close in the Euclidian distance.

We use the semimetric D in definition (2.13) to select the closest‡ point to yj in ΩS , indexed by n(j).
In an abuse of notation, we also let µ(·, ·) be the correlation of the rows of X with v→, defined by

µ(v→,xq→) =
〈v→,xq→〉
‖v→‖2‖xq→‖2

, (2.18)

where 〈v→,xq→〉 = v→x
?
q→ is the Hermitian inner product of row vectors and ‖ · ‖2 is the induced `2 norm.

Note that the correlation (2.18) has absolute value equal to 1 in the SMV setting, where Nv = 1 and v→
and xk→ are complex numbers. Then, (2.13) reduces to I1, the interaction coefficient used in [7, Section 4]
to quantify the quality of imaging reconstructions with `1 optimization. Here we consider Nv > 1, and note
that since |µ(v→,xk→)| ≤ 1, the multiple view interaction coefficient satisfies INv

≤ I1.
The results in sections 2.2.1–2.2.2 show that the smaller INv

and noise level ε are, the better the
reconstruction Xε of X. We do not pursue the question of exact recovery, but seek instead to estimate the
neighborhood of the support S of X, where the largest entries in Xε lie. The size of this neighborhood may
be thought of as the resolution limit. If there are only a few unknowns supported at far apart points, then
INv

≤ I1 � 1, and the neighborhood will be very small, depending on ε. Moreover, the reconstruction
Xε will be almost exact. Otherwise, I1 will not be small but, depending on the rows of X, the multiple
interaction coefficient may satisfy INv

� I1. If this is the case, then the results of our analysis show that
there is an advantage in using the MMV methodology.

2.2.1. Estimation of the support of X. The next theorem, proved in section 5.2, quantifies the
support of the reconstruction Xε in terms of INv and the noise level ε.

Theorem 2.1. Consider the matrix W ε = G(Xε −X), defined in terms of the unknown solution X
and its reconstruction Xε, the minimizer of (2.11). This matrix cannot be computed but is guaranteed to
satisfy the bound

‖W ε‖F ≤ 2ε. (2.19)

‡If there are more than one such points, we just pick one and let n(j) be its index.
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Suppose that there exists r ∈ (0, 1) so that 2INv < r < 1, and define the set

Br(S) = {1 ≤ j ≤ Ny such that ∃ q ∈ S satisfying D(j, q) < r},

called the r–vicinity of S with respect to the semimetric D. If we decompose the reconstruction in two parts

Xε = Xε,r +Eε,r, (2.20)

where Xε,r has row support in Br(S) and Eε,r has row support in {1, . . . , Ny} \Br(S), we have

‖Eε,r‖1,2 ≤
2INv

r
‖Xε‖1,2 +

1

r

∥∥(G?W ε
)
S→

∥∥
1,2
, (2.21)

where G? ∈ CNy×Nr is the Hermitian adjoint of G and
(
G?W ε

)
S→ ∈ C|S|×Nv is the restriction of the

matrix G?W ε to the rows indexed by the entries in S.

We may think of the matrix Eε,r as an error in the reconstruction, because its rows are supported
away from S. The theorem says that this error depends on the multiple view interaction coefficient. In the
special case Nv = 1 (i.e., the SMV formulation) and for ε = 0, the result is precisely [7, Theorem 4.1], which
bounds the error in terms of the interaction coefficient I1. Here we have Nv noisy data sets, and in the
case INv � I1, we expect a better estimate of the support S with MMV than with SMV, because we can
choose a smaller r–vicinity of S that supports the largest entries in the reconstruction Xε.

The noise level ε appears in the last term of (2.21). With the definition of the norm ‖ · ‖1,2, the
normalization of the columns of G and the bound (2.19), we conclude that this term is at most of order ε,

∥∥(G?W ε
)
S→

∥∥
1,2

=
∑
j∈S
‖g?jW ε‖2 =

∑
j∈S

[
Nv∑
v=1

|g?jwε
v|2
]1/2

≤
∑
j∈S

[
Nv∑
v=1

‖wε
v‖22

]1/2

= |S|‖W ε‖F ≤ 2ε|S|,

where wε
v are the columns of W ε. This is a pessimistic estimate. In the numerical simulations we found

that
∥∥(G?W ε

)
S→

∥∥
1,2

is typically much smaller than 2ε|S|.

2.2.2. Quantitative estimation of X. Now that we have quantified the error Eε,r in Theorem 2.1,
it remains to study the approximation of the unknown X by Xε,r = Xε−Eε,r, which is supported in a set
Sε ⊂ Br(S). Because S and Sε are different sets in general, we decompose Xε,r in two parts: one supported
in S that we compare with X, and a residual. We describe first the decomposition and then state the result.

Let us denote by GS = (gj)j∈S the Nr × |S| matrix obtained by restricting the columns of G to the
indexes in S. Suppose that GS has linearly independent columns, as otherwise it is impossible to recover X
even with noiseless data, and introduce its pseudoinverse

G†S = (G?
SGS)−1G∗S . (2.22)

We decompose Xε,r in two parts

Xε,r = Xε,r + Eε,r, (2.23)

where Xε,r has row support in S and its restriction to the rows indexed by S satisfies

Xε,r
S→ = G†SGX

ε,r. (2.24)

This definition gives that

G†SGX
ε,r = (G?

SGS)−1G∗S

(
GSX

ε,r
S→ +GEε,r

)
= Xε,r

S→ + (G?
SGS)−1G∗SGEε,r,

so the residual Eε,r satisfies

G∗SGEε,r = 0. (2.25)
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That is to say, the columns of GEε,r are orthogonal to the range of GS . Note that Eε,r has row support in
S ∪ Sε. If Sε were the same as S, then (2.25) would imply that Eε,r = 0. Thus, we may think of Eε,r as a
residual that accounts for Xε,r not having the exact support S.

The matrix Xε,r, which is row supported in S by definition, is compared to the unknown X in the next
theorem. However, since Xε,r cannot be computed directly, we also need to relate it to the reconstruction
Xε,r supported near S, in the set Sε. The next theorem relates Xε,r to the “effective matrix” Xε,r obtained
by local aggregation of the rows of Xε,r. To define this aggregation, let us decompose the set Sε in |S|
disjoint parts§, each corresponding to a point in S,

Sε =
⋃
j∈S

Sj , Sj = {q ∈ Sε such that D(q, j) ≤ D(q, j′), ∀ j′ ∈ S}, j ∈ S. (2.26)

The effective matrix Xε,r ∈ CNy×Nv is defined entry wise by

Xε,r
j,v =


∑
l∈Sj

Xε,r
l,v µ(gj , gl), if j ∈ S,

0, otherwise,

for 1 ≤ j ≤ Ny, 1 ≤ v ≤ Nv. (2.27)

Note that µ(gj , gl) is complex valued. However, when the set Sj is small, so that D(j, l) � 1 for l ∈ Sj ,
µ(gj , gl) ≈ 1 and (2.27) is approximately the local sum of the entries of Xε,r.

Theorem 2.2. Let Xε,r and Xε,r be be defined as in (2.20) and (2.23). Then, Xε,r approximates the
unknown X with the error estimate

‖Xε,r −X‖1,2 ≤
2INv

r
‖Xε‖1,2 +

3

r
‖(G?W ε

)
S→

∥∥
1,2
, (2.28)

where W ε is the matrix defined in Theorem 2.1. Moreover, if the support of Xε,r is decomposed in |S|
disjoint parts as in (2.26), Xε,r is approximated by the effective matrix Xε,r with entries (2.27), as follows

(1−I1)‖Xε,r −Xε,r‖1,1 ≤ 2I1‖Xε,r‖1,1. (2.29)

This theorem, proved in section 5.3, shows that under the same conditions as in Theorem 2.1, which
guarantee that the minimizer Xε of (2.11) has support near S, the matrix Xε,r is a good approximation
of the unknown X. If the right hand side in (2.29) is small, which occurs when the points in ΩS are well
separated [7], then Xε,r is close to the effective matrix Xε,r. The bound in (2.29) involves the interaction
coefficient I1 for the SMV problem, which in our setting may be much larger than INv . This means that
while a small INv may guarantee a good estimate of the support of X per Theorem 2.1, the estimate of the
entries in X by the local sum in (2.27), which is close to the sum of the entries of Xε, may not be accurate
when the unknowns are supported at nearby points.

2.2.3. Matrices X with orthogonal rows. We now show that if the unknown matrix X has or-
thogonal rows, then the multiple view interaction coefficient INv

may be much smaller than the interaction
coefficient I1. In light of the results in Theorem 2.1, this means that the MMV approach can give improved
estimates of the support S of X, under less stringent conditions on the separation between the points in S,
than in the SMV formulation.

Proposition 2.3. Suppose that the unknown matrix X ∈ CNy×Nv has row support in the set S with
cardinality 1 < |S| ≤ Nv, and that its nonzero rows are orthogonal. Then, the multiple view interaction
coefficient (2.13) is given by

INv = max
1≤j≤Ny

√ ∑
q∈S\{n(j)}

|µ(gj , gq)|2. (2.30)

§If more than one point in S is at the same distance to yq , with q ∈ Sε, we pick any one of them so that Sj are disjoints.
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This proposition, proved in section 5.4, gives a simpler expression of INv
, which we can compare with

the interaction coefficient

I1 = max
1≤j≤Ny

∑
q∈S\{n(j)}

|µ(gj , gq)|, (2.31)

to understand when INv � I1. For this purpose, let us define the vector γ(j) ∈ R1×(|S|−1) with entries
|µ(gj , gq)|, for q ∈ S \ {n(j)}, which is a set with cardinality |S| − 1, and rewrite (2.30) and (2.31) as

INv
= max

1≤j≤Ny

‖γ(j)‖2, I1 = max
1≤j≤Ny

‖γ(j)‖1, (2.32)

using the `2 and `1 vector norms. Suppose that the maximizer in the definition of INv is at index j = m.
Basic vector norm inequalities give the general relation

INv = ‖γ(m)‖2 ≤ ‖γ(m)‖1 ≤ I1,

which is nothing new than was discussed previously. However, if we assume further that the entries in γ(m)

are of the same order, meaning that there exist positive numbers β− and β+, ordered as β− ≤ β+ and
satisfying β+/β− = O(1), such that

β− ≤ |µ(gm, gq)| ≤ β+, ∀ q ∈ S \ {n(m)}, (2.33)

then we have

INv
≤ β+

√
|S| − 1 =

β+
[
β−(|S| − 1)

]
β−
√
|S| − 1

≤ β+‖γ(m)‖1
β−
√
|S| − 1

≤ β+I1

β−
√
|S| − 1

= O

(
I1√
|S| − 1

)
. (2.34)

Recalling the discussion below definition (2.17) of the semimetric D and that |µ(gm, gq)| = 1−D(m, q),
we can interpret the condition (2.33) as having points in the support ΩS of the unknown evenly distributed, at
similar spacing in the imaging region Ω. If this condition holds, then the multiple view interaction coefficient
is smaller than the single view coefficient I1, by order

√
|S|. We illustrate this further with numerical

simulations in section 3.

2.2.4. Clusters of unknowns. For general distributions of the points in ΩS , the multiple view interac-
tion coefficient INv

may be large, so we cannot conclude from Theorems 2.1 and 2.2 that the reconstruction
Xε approximates X. Here we consider an extension of the results to the case of points in ΩS that are
clustered around a few locations, indexed by the elements in the set C ⊂ {1, . . . , Ny} of cardinality |C| � |S|.

We decompose the set S in |C| disjoint parts, called “cluster sets”,

S =
⋃
j∈C

Sj , Sj = {q ∈ S such that D(q, j) < D(q, j′), ∀j′ ∈ C, j′ 6= j}, j ∈ C, (2.35)

where j ∈ C indexes the centers of the clusters and we assume that the distance (measured by D) between
these centers is larger than the radius of each cluster set. We also define the “effective cluster matrix” X by
aggregating the rows of X over the cluster sets. Explicitly, X ∈ CNy×Nv is row supported in C, with entries

Xj,v =


∑
l∈Sj

Xl,v µ(gj , gl), j ∈ C,

0, otherwise,

for 1 ≤ j ≤ Ny, 1 ≤ v ≤ Nv. (2.36)

If the radius of the cluster sets Sj is small, we have µ(gl, gj) ≈ 1 and the aggregation in (2.36) is approxi-
mately the sum of the rows of X. Our goal in this section is to study in what sense the reconstruction Xε,
the solution of the optimization problem (2.11), approximates X.
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Let GC = (gj)j∈C be the restriction of the sensing matrix to the columns indexed in C, and suppose that
GC has independent columns, so that we can define its pseudoinverse by

G†C = (G?
CGC)

−1G?
C . (2.37)

Then, we can rewrite the data model (2.10) in terms of a new unknown matrix U ∈ CNy×Nv for the cluster,
with row support in C. This matrix is not the same as the effective cluster matrix X, but is defined by the
projection of X on C, such that its restriction to the rows indexed by C satisfies

UC→ = G†CGX. (2.38)

We write (2.10) in the form

GU + W = DW , (2.39)

where R = X −U is the residual after the projection, and

W = W +GR, (2.40)

is the new “noise matrix”, consisting of the actual noise W and the systematic error term GR. The next
lemma, proved in section 5.5, quantifies this error in terms of the radius of the row support of X around the
cluster centers indexed by C.

Lemma 2.4. Suppose that each cluster set Sj in the decomposition (2.35) is supported within a ball of
radius rC around the point j ∈ C, with respect to the semimetric D, for all j ∈ C. Then,

‖GR‖F ≤
√

2rC‖XT ‖2,1, (2.41)

where the index T denotes the transpose.

Assuming that rC is small, we introduce a new “noise level” ε, so that

‖W‖F = ‖W +GR‖F < ε. (2.42)

We also define the multiple view interaction coefficient as in (2.13), with the set S replaced by the smaller
set C and the row vectors xq→ replaced by the rows uq→ of U ,

I U
Nv

= max
1≤j≤Ny

sup
v→∈C1×Nv

∑
q∈C\{n(j)}

|µ(gj , gq)||µ(v→,uq→)|. (2.43)

The next theorem, proved in section 5.5, is the extension of Theorem 2.1 for the cluster.

Theorem 2.5. Let Xε be the minimizer of (2.11), with ε chosen large enough to satisfy (2.42). De-
compose it in two parts

Xε = U ε,r +Eε,r, (2.44)

where U ε,r is row supported in the set Br(C), the r vicinity of C with respect to the semimetric D, and Eε,r

is the error supported in the complement {1, . . . , Ny} \Br(C). This satisfies the estimate

‖Eε,r‖1,2 ≤
2I U

Nv

r
‖Xε‖1,2 +

1

r

∥∥(G?W ε
)
C→

∥∥
1,2
, (2.45)

with W ε = G(Xε −X) defined as in Theorem 2.1.

This result quantifies the error Eε,r that is supported away from the center points of the clusters in
terms of the multiple view interaction coefficient (2.43). If these center points are sufficiently far apart, then
I U

Nv
� INv

and the estimate (2.45) is an improvement over that in Theorem 2.1. Note that the same matrix
W ε enters these estimates, except that in (2.45) the row restriction is on the smaller set C. However, the
“noise level” ε may be larger than in Theorem 2.1, in order to accommodate the systematic error estimated
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in (2.41). If the radius rC is so small that this estimate is of the order of ‖W ‖F , then the theorem says that
the optimization approximates the set C with the same accuracy as if we had single unknowns located at yj ,
for j ∈ C, and not clusters of points.

Finally, we state the analogue of Theorem 2.2 for the cluster, proved in section 5.5. This quantifies the
approximation of the effective cluster matrix (2.36) by the part U ε,r of the minimizer Xε.

Theorem 2.6. Let U ε,r be decomposed in two parts

U ε,r = U ε,r + Eε,r, (2.46)

where U ε,r ∈ CNy×Nv is the matrix with row support in C, satisfying

U ε,r
C→ = G†CGU

ε,r. (2.47)

This matrix approximates the cluster unknown matrix U as

‖U ε,r −U‖1,2 ≤
2I U

Nv

r
‖Xε‖1,2 +

3

r

∥∥(G?W ε
)
C→‖1,2. (2.48)

Moreover, if we let U ε,r be the effective reconstruction matrix with rows supported in C, the analogue of
(2.27) with Xε,r replaced by U ε,r and S replaced by C, then we have

(1−I U
1 )‖U ε,r −U ε,r‖1,1 ≤ 2I U

1 ‖U ε,r‖1,1. (2.49)

Finally, the matrix U is related to the effective cluster matrix X defined in (2.36) by

(1−I U
1 )‖U −X‖1,1 ≤ 2I U

1 ‖X‖1,1. (2.50)

This result says that if the center points of the clusters are sufficiently far apart, so the single view
interaction coefficient I U

1 is smaller than I1, the estimates (2.49)–(2.50) are an improvement over those in
Theorem 2.2. However, the reconstruction is not an approximation of X, but of the effective matrix X.

3. SAR imaging of direction dependent reflectivity. In this section we consider the application
of SAR imaging of direction dependent reflectivities. We begin with the data model in section 3.1, and then
derive in section 3.2 the linear system (2.1). The discussion in these two sections is very similar to that in
[8], so we keep it short and give only the information that is needed to connect to the theory in section 2.2.
We explore in section 3.3 the condition of orthogonality of the rows of X, assumed in Proposition 2.3, and
use numerical simulations in section 3.4 to illustrate the theoretical results.

3.1. The SAR data model. Consider the set-up illustrated in Figure 3.1, where we display a piece
of the synthetic aperture spanned by the moving transmit-receive antenna, called a sub-aperture. We
approximate the sub-aperture by a line segment along the unit vector τ , with center at location r, and
length a. The imaging region Ω lies on a plane surface, and is centered at location y, at distance L = |r−y|
from the center of the aperture. The antenna probes the imaging region by emitting periodically the signal
f(t), and measuring the back-scattered waves. The waves propagate much faster than the antenna, so we
assume that the emission and reception occur at the same location. The antenna moves by a small increment
∆r = a

(Nr−1)τ between two emissions, so the measurements are made at the Nr locations

rj = r − aτ

2
+ (j − 1) ∗∆r, j = 1, . . . , Nr. (3.1)

In the single scattering (Born) approximation, and neglecting for now polarization effects, the scattered
wave field measured at rj is given by

p(rj , t; r, ω) =

∫
dω

2π
e−iωtf̂(ω)k2(ω)

Ny∑
q=1

ρq(r, ω)
exp

[
2ik(ω)|rj − yq|

](
4π|rj − yq|

)2 . (3.2)

9
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y
Ω

Fig. 3.1. Setup for SAR imaging using a linear synthetic aperture centered at r, at distance L from the center y of
the imaging region Ω. The antenna locations r span the aperture of length a, and y denotes a point in Ω. The unit vector
m = (r − y)/L pointing from y to r defines the range direction.

Here the hat denotes Fourier transform with respect to time, ω is the frequency, ρq(r, ω) is the reflectivity¶

of the scatterer at yq ∈ Ω, as viewed from the aperture centered at r and at the central frequency ω of f(t).
The propagation of the waves between the antenna location rj and yq is modeled with the Green’s function
for Helmoltz’s equation in the medium with constant wave speed c, and the wavenumber is k(ω) = ω/c.

In SAR imaging, the wave-field (3.2) is convolved with the time reversed emitted pulse, delayed by the
round trip travel time of the waves between the antenna and the center point y in Ω. This data processing
is called down-ramping [20] and we denote the result by

d(rj , t; r, ω) = p(rj , t; r, ω) ?t f
?
(
− t− 2|rj − y|/c

)
, (3.3)

where f? denotes the complex conjugate of f . Writing the time convolution in terms of the Fourier transform,
and letting

|f̂(ω)|2 = ϕ̂

(
ω − ω
b

)
, (3.4)

with ϕ̂ a non-negative, smooth function of dimensionless argument and support in the interval (−π, π), so
that b denotes the bandwidth of the signal, we obtain the data model

d(rj , t; r, ω) =

∫
dw

2π
e−i(ω+w)tϕ̂

(w
b

)
k2(ω + w)

Ny∑
q=1

ρq(r, ω)
exp

[
2ik(ω + w)

(
|rj − yq| − |rj − y|

)](
4π|rj − yq|

)2 . (3.5)

3.1.1. Scaling regime and simplification of data model. We define the unit vector m = (r−y)/L
which determines the so-called range direction in imaging, and introduce the length scales

Y = sup
y∈Ω
|(y − y) ·m|, Y ⊥ = sup

y∈Ω
|P(y − y)|, (3.6)

where P = I −mmT is the orthogonal projection in the cross-range plane, orthogonal to m. These length
scales quantify the range and cross-range size of the imaging region Ω.

We consider as in [8] a Fresnel diffraction regime, with L� a > Y ⊥ � λ and Fresnel numbers satisfying

a2

λL
&
aY ⊥

λL
&

(Y ⊥)2

λL
& 1, (3.7)

¶The reflectivity is assumed slowly changing so it can be approximated by a constant over this sub-aperture and bandwidth.
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where λ = 2π/k is the central wavelength and k = k(ω) = ω/c. The cross-range resolution of SAR imaging
is of the order λL/a, so the middle inequality in (3.7) ensures that the cross-range size Y ⊥ of the imaging
region is large with respect to this resolution limit. The other inequalities in (3.7) mean physically that
the wave front observed at the sub-aperture or in Ω is not planar. If this were not the case, it would be
impossible to localize the scatterers in cross-range.

The range resolution of SAR imaging is determined by the accuracy of travel time estimation from the
down-ramped data (3.5). It is of the order c/b, so we let the range scale Y of the imaging region be larger

Y & c/b. (3.8)

Typically b � ω, especially when imaging frequency dependent reflectivities. To simplify the data model,
we assume that b is small enough so that

b

ω

aY ⊥

λL
� 1. (3.9)

This can be arranged by division of a larger bandwidth in smaller sub-bands. Similarly, we can ensure a
synthetic aperture segmentation in sub-aperture sizes a satisfying

a2Y

λL
2 � 1,

a2Y ⊥

λL
2 � 1. (3.10)

Under the scaling assumptions (3.7)–(3.10) the data model (3.5) takes the simpler form [8, Section 3.1]

d(rj , t; r, ω) ≈
(

k

4πL

)2 Ny∑
q=1

ρq(r, ω)ϕ
[
b
(
t+

2m ·∆yq
c

)]
e−iωt×

exp
[
− 2ik

(
m ·∆yq +

∆rj · P∆yq

L
− ∆yq · P∆yq

2L

)]
, (3.11)

where we introduced the notation

∆rj = rj − r, ∆yq = yq − y.

Note that by varying t in (3.11), we can limit the sum to the set of points with range coordinates satisfying
m ·∆yq = −t+O(c/b). This set is called a range bin in the SAR literature [20].

We consider a single range bin, for fixed time t = t, and study the estimation in the cross-range direction
of the reflectivity, for the single frequency sub-band centered at ω. Then, the model (3.11) takes the form

Dj(r) =

Ny∑
q=1

exp
[
− 2ik

∆rj ·P∆yq

L

]
√
Nr

Xq(r), (3.12)

with the notation

Xq(r) = ρq(r, ω)
√
Nrϕ

[
b
(
t+

2m ·∆yq
c

)]
exp

[
− 2ik

(
m ·∆yq −

∆yq · P∆yq

2L

)]
, (3.13)

and

Dj(r) = d(rj , t; r, ω)eik t

(
4πL

k

)2

. (3.14)

Here we suppressed the constant variables in the notation and assume that all the Ny points in the sum are
in the same range bin, determined by t.
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3.2. The MMV formulation. The multiple views in the MMV formulation correspond to different
sub-apertures, with centers at rv, for v = 1, . . . , Nv. The noiseless data model for the v–th view is given by
(3.12), with r replaced by rv and L replaced by Lv = |rv − y|. We also let mv = |rv − y|/Lv and denote
the unit tangent vector to the aperture by τv.

To fuse all the views in a linear system of the form (2.1), we suppose as in [8] that

max
1≤v≤Nv,1≤q≤Ny

a

λ

∣∣∣(τv · Pv

Lv

− τ1 · P1

L1

)
∆yq

∣∣∣� 1, max
1≤v≤Nv,1≤q≤Ny

b

c

∣∣∣(mv −m1) ·∆yq
∣∣∣� 1. (3.15)

Physically, this means that the imaging points remain within the classic SAR resolution limits for all the
views. With (3.15) we derive from (3.12) the linear system (2.1), for matrices D, X and G with entries

Dj,v = Dj(rv), Xq,v = Xq(rj), Gj,q =
1√
Nr

exp
[
− 2ik

∆rj · P1∆yq

L1

]
, (3.16)

where P1 = I −m1m
T
1 .

Note that the sensing matrix G is defined relative to the first sub-aperture, the line segment centered
at r1, along the unit vector τ1. Its columns gq have norm one, as assumed in (2.15), and their correlation

µ(gq, gl) =

Nr∑
j=1

G?
j,qGj,l =

1

Nr

Nr∑
j=1

exp
[
− 2ik

∆rj · P1(yq − yl)
L1

]
(3.17)

is a function of yq − yl, as stated below equation (2.17). We can approximate further this correlation by
replacing the sum with the integral over the sub-aperture,

µ(gq, gl) ≈
1

a

∫ a/2

−a/2

dr exp
[
− 2ikr

τ1 · P1(yq − yl)
L1

]
= sinc

(kaτ1 · P1(yq − yl)
L1

)
. (3.18)

This attains its maximum, equal to 1, when q = l, and satisfies |µ(gq, gl) < 1 for all q 6= l, as assumed in
(2.16). Moreover, |µ(gq, gl)| decays monotonically in the vicinity of its peak, so we can relate the Euclidian
distance between the points to the semimetric D(q, l), as pointed out below equation (2.17).

3.3. Orthogonality of the rows. We now study under which conditions the rows xq→ of X are
orthogonal, as assumed in section 2.2.3.

Let us introduce the notation

ξq,v = ρq(rv, ω)
√
Nr ϕ

[
b
(
t+

2mv ·∆yq
c

)]
≈ ρq(rv, ω)

√
Nr ϕ

[
b
(
t+

2m1 ·∆yq
c

)]
, (3.19)

with the approximation due to assumption (3.15) and the smoothness of ϕ. Definitions (3.13), (3.16) give

∣∣µ(xq→,xl→)
∣∣ =

|〈xq→,xl→〉|
‖xq→‖2‖xl→‖2

≈

∣∣∣∣∣
Nv∑
v=1

ξq,vξ
?
l,v exp

[
2ikmv · (yq − yl)

]∣∣∣∣∣√√√√ Nv∑
v=1

|ξq,v|2
√√√√ Nv∑

v=1

|ξl,v|2
, (3.20)

where the quadratic terms in the phase in (3.13), which are approximately independent of the view index v
by assumption (3.15), do not contribute to the absolute value.

There are various possibilities for achieving a small right hand side in (3.20), depending on how rapidly
(3.19) changes with the view index v. Consistent with our approximation of the reflectivity by a constant
over each sub-aperture, we assume that ρq(rv, ω) changes slowly with rv, on a length scale larger than a. We
also suppose that all the sub-apertures have the same direction τ1 and they overlap, with two consecutive
centers separated by a small distance

|rv+1 − rv| =
A

Nv − 1
� a, v = 1, . . . , Nv − 1.
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This allows us to approximate the sum over v in (3.20) by the integral over the large aperture A � a,
centered at ro,

∣∣µ(xq→,xl→)
∣∣ ≈

∣∣∣∣∣
∫ A/2

−A/2

dr ψq,l(r) exp
[
2ik

(ro + rτ1 − y)

|ro + rτ1 − y|
· (yq − yl)

]∣∣∣∣∣
‖ψq,q‖1/2

L1(−A/2,A/2)‖ψl,l‖1/2
L1(−A/2,A/2)

. (3.21)

Here we parametrize the large aperture by the arclength r ∈ [−A/2, A/2], and ψq,l(r) is the smooth kernel
satisfying the interpolation conditions

ψq,l

(
r =

( v − 1

Nv − 1
− 1

2

)
A

)
= ξq,vξ

?
l,v, (3.22)

at the arclength r corresponding to the v–th sub-aperture center rv = ro+
(

v−1
Nv−1−

1
2

)
Aτ1, for v = 1, . . . , Nv.

Proposition 3.1. There exists a constant Cq,l that depends on how fast the reflectivities at points yq
and yl change with direction, such that∣∣µ(xq→,xl→)

∣∣ ≤ min{1, Cq,l/|Q|}, for q 6= l, q, l = q, . . . , Ny, (3.23)

where

Q = 4π
Aτ1 · Po(yq − yl)

λ|ro − y|
, Po = I −mom

T
o , mo =

(ro − y)

|ro − y|
. (3.24)

This proposition, proved in Appendix A, shows that the correlation of the rows of the unknown matrix
X is large for points that are separated in cross-range by at most order λ|ro − y|/A. This length scale
is the cross-range resolution of SAR imaging over the large aperture A. It is also the distance at which
isotropic scatterers must be separated in order to guarantee unique recovery of their reflectivity with `1
(SMV) optimization over the large aperture, as follows from [28, 13, 14, 7].

In the linear system (2.1) with matrices (3.16), we use multiple views from sub-apertures of size a� A.
A single view corresponds to an SMV problem, and the condition of unique recovery would be that the points
should be much further apart, at distance of order λ|ro − y|/a. In MMV we use the entire large aperture,
segmented in Nv smaller sub-apertures.

When the scatterers are approximately isotropic, the constant in (3.23) is Cq,l ≈ 2. In this case there is
no need to segment the aperture, so it is natural to ask if the MMV reconstruction is similar to the SMV
one, over the large aperture. This is a difficult question, but we can say from the results in section 2.2.3 that
MMV will work better‖ then SMV over one sub-aperture, because the rows of the unknown matrix X are
approximately orthogonal when the points in its support are at distances of order λ|ro−y|/A� λ|ro−y|/a.

When the scatterers have a stronger dependence on direction, the SMV approach over the large aperture
does not work well. Aperture segmentation is needed to avoid systematic modeling errors in the optimization.
While we may apply the SMV approach for a single sub-aperture, Proposition 3.1 and the results in section
2.2.3 show that the MMV method performs better.

3.4. Numerical results. We present here numerical results that illustrate the theory presented in
section 2.2. We begin in section 3.4.1 with a computational assessment of the reduction of the multiple view
interaction coefficient with respect to the single view one, in the case of orthogonal rows of the unknown
matrix X. Then we present in section 3.4.2 imaging results, using the parameters of the X-band GOTCHA
SAR data set [1]: The receive-transmit platform moves on a linear aperture A = 1.5km at altitude 8km,
and with center ro at 7km west of y. The platform emits and receives signals every meter. The central
frequency is 10GHz and since we only present imaging in cross-range, the bandwidth plays no role. The
waves propagate at speed c = 3 · 108m/s.

The data are generated numerically using the single scattering approximation. The additive noise matrix
W has mean zero and independent complex Gaussian entries with standard deviation σ given as a percent
of the largest entry in D. The optimization problem (2.11) is solved using the software package CVX [21].

‖As shown in section 2.2.3, the improvement is dependent on the distribution of the scatterers in the imaging region.
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Fig. 3.2. Left plot: The ratio I1

INv

√
|S|

vs. |S| in the abscissa. The other plots: Histograms of the ratio I1/INv for 2500

realizations of the imaging scene. From left to right |S| equals 9, 16 and 36. The ordinate shows the number of realizations
and the abscissa is the value of I1/INv .

3.4.1. Numerical illustration of effects of orthogonality of rows of X. The discussion in section
2.2.3 says that if the points in ΩS are distributed evenly in the imaging window Ω, and the rows of X are
orthogonal, then the multiple view interaction coefficient INv is smaller than I1, by a factor of order

√
|S|.

Here we focus attention on imaging in the cross-range direction, so the imaging region is reduced to a line
segment. We cannot have a large number of points with similar mutual separation on a line. Nevertheless,
we show here that the numerically computed ratio I1/INv

increases with |S|, at a rate that is slightly slower
than

√
|S|.

We display in Figure 3.2 the ratio I1/INv computed for imaging scenes with |S| ranging from 4 to
50, and cross-range separation of nearby neighbors chosen randomly, uniformly distributed in the interval[
λLo/A, 3λLo/A

]
, where Lo = |ro − y|. The large aperture A is divided in sub-apertures of size a = A/20.

The rows of X have length 50 and are orthogonal∗∗, to stay within the setting of section 2.2.3.
The left plot in Figure 3.2 shows the ratio I1/

(
INv

√
|S|
)

computed for one realization of the imaging

scene. We note that the increase of I1/INv with |S| is slightly slower than
√
|S|. The histograms in Figure

3.2, computed for 2500 realizations of the imaging scene, also show that the ratio is slightly less than
√
|S|.

3.4.2. Imaging results. We begin with a comparison of imaging results obtained with the MMV
optimization formulation (2.11) for Nv = 24, the SMV formulation for Nv = 1, and the conventional SAR
image. The latter is given by the superposition of the down-ramped data (3.5), synchronized using the
round-trip travel time of the waves from the radar platform to the imaging point

ISAR(y; r) =

Nr∑
j=1

d
(
rj , t = 2|rj − y|/c; r, ω

)
. (3.25)

The superposition may be over the entire aperture centered at r = ro, in which case Nr = 1500, or over
a sub-aperture, centered at r = rv for v = 1, . . . , Nv, in which case Nr = 300. The sub-aperture length is
a = A/6 = 300m, and the spacing between the sub-apertures is 50m, center to center. The results in Figures
3.3–3.5 are for noiseless data and in Figure (3.6) we consider noise with standard deviation σ = 10%.

We display in the left plot of Figure 3.3 the reflectivity to be reconstructed. It consists of 6 small scatterers
at cross-range locations spaced by distances of order λLo/A. The conventional SAR image computed over
the entire aperture A = 1.5km is shown in the middle plot. It does not resolve well the location of the
five scatterers that are visible only on about a sixth of A, but it obtains a large peak for the one scatterer
with reflectivity that varies less with direction. In the right plot of Figure 3.3 we display the average of the
images (3.25) obtained over the Nv sub-apertures. This does have peaks near the scatterers, for example
the rightmost scatterer is better seen. However, since the resolution is λLo/a, the image appears blurry at
the cross-range scale λLo/A in the figure.

∗∗As shown in section 3.3, the rows of X are almost orthogonal when its support points are spaced at distances larger than
λLo/A. Thus, the ratio I1/INv is expected to be roughly like in the figures for any reflectivity function that varies smoothly
with the direction of illumination.
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Fig. 3.3. Left plot: Exact reflectivity function as viewed from the location on the flight path (ordinate, in meters) vs.
the cross-range location in the imaging scene (abscissa, in units λLo/A). Middle plot: The conventional SAR image (3.25)
calculated over the entire aperture. This assumes that the reflectivity is isotropic (does not change along the ordinate). Right
plot: The average of the conventional SAR images (3.25) calculated over the Nv = 24 sub-apertures.
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Fig. 3.4. Left plot: The MMV reconstruction of the reflectivity shown in the left plot in Figure 3.3. Right plot: The SMV
reconstruction. The axes are as in Figure 3.3.

In Figure 3.4 we compare the results obtained with the MMV and SMV approach. We note that the
MMV method recovers exactly the support of the scatterers, whereas the SMV method has many spurious
peaks. This result is an illustration of the conclusion reached at the end of section 2.2.2, which says that
MMV may give a better estimate of the support of the scatterers. However, the estimate of the value of the
reflectivity is not accurate, unless the scatterers are further apart.

In Figure 3.5 we consider reflectivities that vary more rapidly over directions, and compare the effect
of the size of the sub-aperture on the quality of the reconstructions with the MMV approach. The images
show that the best reconstruction is for a = 70m, which corresponds roughly with the scale of variation of
the true reflectivity in the top plot. For the smaller aperture a = 40m (left, bottom plot) the reconstructed
support is close but not exact, whereas for the larger aperture a = 100m (right, bottom plot) the image
has spurious peaks caused by the systematic error due to the reflectivity varying on a smaller scale than the
sub-aperture. Thus, we conclude that in order to image successfully direction dependent reflectivities, it is
necessary to have a good estimate of their scale of variation, so that the aperture is properly segmented.

In Figure 3.5 we display the effect of additive noise with standard deviation σ = 10% on the MMV
reconstruction of the reflectivity, for sub-aperture size a = 70m. We note that for such noise the support
of the reconstruction is basically unchanged and the values of the reflectivity are only slightly different.
Naturally, at higher noise levels, the reconstruction will be worse.

4. SAR imaging with polarization diverse measurements. In this section we describe briefly the
application of the MMV methodology to SAR imaging with polarization diverse measurements. We begin in
section 4.1 with the derivation of the data model (2.1) used in the MMV method, and then show numerical
results in section 4.2.
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Fig. 3.5. Left plot: Exact reflectivity function as viewed from the location on the flight path (ordinate, in meters), vs.
the cross-range location in the imaging scene (abscissa, in units λLo/A). Other plots: The MMV reconstruction for apertures
a = 50m, 70m and 100m, from left to right.
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Fig. 3.6. Comparison of MMV reconstructions with noiseless data (left plot) and noisy data (right plot). The noise is
additive, complex Gaussian, with mean zero independent entries and standard deviation σ = 10% of the largest entry in D.
The axes are as in Figure 3.3.

4.1. Data model. We consider as in the previous section a collection of |S| scatterers at locations

yq ∈ Ω, for q ∈ S. The scatterers are penetrable, with volume smaller than λ
3

by a factor α � 1, so that
the scattered electric field at the SAR platform can be modeled by [3]

E (rj , t; r,f) =

∫
dω

2π
e−iωtik3(ω)

√
µ

ε

∑
q∈S

Ĝ (ω, rj ,yq)ρq(r)Ĝ (ω,yq, rj)f̂(ω) +O(α4), (4.1)

where λ is the central wavelength and µ and ε are the magnetic permeability and the electric permittivity
in the medium. These define the wave speed c = 1/

√
µε and the wavenumber k(ω) = ω/c. The scatterers

are represented in (4.1) by their center location yq and their reflectivity tensor assumed constant over the
sub-aperture centered at r,

ρq(r) = α3
(εq
ε
− 1
)
Mq(r), (4.2)

where εq is the electric permittivity in the scatterer and Mq is its α–independent polarization tensor. We
refer to [2] for details on Mq, which depends on the shape of the scatterer. Here we assume that it is a real
valued 3 × 3 symmetric matrix. Since we consider a fixed central frequency ω, we suppress in the notation
the dependence of ρq on ω. We also neglect the variation of the magnetic permeability in the scatterer,
although this can be taken into account, as shown in [2].

The wave propagation from the radar platform to the scatterers and back is modeled in (4.1) by the
dyadic Green’s tensor

Ĝ (ω, r,y) =

(
I +

∇∇T

k2(ω)

)
exp[ik(ω)|r − y|]

4π|r − y|
, (4.3)
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Fig. 4.1. Geometry of the data acquisition. The radar platform flies at elevation h from the plane surface containing the
imaging region Ω, centered at y. The distance L from the center r of the aperture to y is order h. The drawing is not up to
scale, as the aperture a and side Y ⊥ of the imaging region are much smaller than L.

where I is the 3× 3 identity matrix. The wave excitation is modeled by the vector f̂(ω). To avoid a lengthy
discussion†† we assume that the radar platform can emit and receive all possible polarizations, so that we
have access to the 3× 3 frequency dependent data matrix

D̂(rj , ω; r) ≈
Ny∑
q=1

Ĝ (ω, rj ,yq)ρq(r)Ĝ (ω,yq, rj), (4.4)

with the approximation due to the neglected O(α4) residual. Note that in (4.4) we sum over all the Ny
points in the imaging region, with the convention that ρq = 0 for q /∈ S.

As in the previous section, we focus attention on imaging in the cross-range direction, so it is sufficient
to consider a single frequency, equal to the central one ω. The wave number at this frequency is denoted by
k, as in the previous section.

The sub-aperture centered at r is linear, of length a, like before, and we assume for simplicity that it is
at constant altitude h, as shown in Figure 4.1. We let u3 be the unit vector in the vertical direction, and
introduce the unit vector u1 = τ × u3, where τ is the unit tangent to the aperture, orthogonal to u3. The
imaging region Ω is in the plane spanned by u1 and τ . We are interested in its cross-section in the direction
of the aperture, which is the cross-range interval centered at y, of length Y ⊥.

In the system of coordinates with center at y and orthonormal basis {uj}1≤j≤3, with u2 = τ , we have

r = r1u1 + r2u2 + hu3, y = y2u2, (4.5)

for all r in the aperture and y in the cross-range imaging interval. We also represent the symmetric 3 × 3
reflectivity tensor ρq(r) by the 1× 6 row-vector formed with the entries in its upper-tridiagonal part

ρq→ = (ρq,11, ρq,22, ρq,33, ρq,12, ρq,13, ρq,23), ρq,jl = uT
j ρqul. (4.6)

The scaling regime is as in the previous section, with length scales ordered as λ� Y ⊥ . a� h and

L = |r| = O(h), |rj | = O(L), j = 1, 2. (4.7)

The Green tensor (4.3) has the following approximation in this regime

Ĝ (ω, rj ,yq) ≈ exp[ik|rj − yq|]
4πL

[
I − (rj − yq)(rj − yq)T

|rj − yq|2

]

≈ exp[ik|rj − yq|]
4πL

1− η2
1 −η1η2 −η1β

−η1η2 1− η2
2 −η2β

−η1β −η2β 1− β2

 , ηj = rj/L, j = 1, 2, β = h/L. (4.8)

††In fact, only the transverse components of the electric field, in the plane orthogonal to the range direction r − y, play a
role in the end, as discussed at the end of this section.
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Fig. 4.2. Top line: From left to right we display all six components of the row vector xq→(r) defined in (4.10), as a
function of location along the aperture (the ordinate in meters) and cross-range location indexed by q in the imaging region
(the abscissa, in units of λLo/A). Bottom line: The MMV reconstruction.

Substituting it in (4.4), and representing the symmetric matrix (4πL)2/
√
NrD̂(rj , ω; r) by the 1 × 6 row

vector formed with the entries in its upper triangular part, we obtain the data model

dj→(r) =

Ny∑
q=1

exp[2ik|rj − yq|]√
Nr

ρq→(r)Γ(r), j = 1, . . . , Nr, (4.9)

with r = r1u1 + r2u2 + hu3 and constant matrix Γ(r) given in Appendix B. This is a linear system of form
(2.1), for Nv = 6, data matrix D ∈ CNr×6 with rows dj→, unknown matrix X ∈ CNy×6 with rows

xq→ = ρq→Γ, (4.10)

and sensing matrix G with normalized columns gq = 1√
Nr

(
exp[2ik|r1 − yq|], . . . , exp[2ik|rNr

− yq|]
)T

.

The system (4.9) is for a single sub-aperture. More sub-apertures, centered at rv, can be taken into
account as explained in the previous section, with the only difference being that instead of having a scalar
unknown, we now have the unknown 1 × 6 row vector ρq(rv)Γ(rv). The linear system that fuses the data
from all the sub-apertures is obtained as in section 3.2, and the unknown matrix X has six times more
columns than in the acoustic case.

Note that the approximation (4.8) of the Green’s tensor Ĝ (ω, rj ,yq) for the sub-aperture centered at
r has the one dimensional null space span{r}. This implies that the matrix Γ(r) is also singular, so we
cannot determine uniquely the reflectivity vectors ρq→ from equation (4.10). To be more explicit, we can
represent the reflectivity tensor ρq in (4.4) in the sub-aperture dependent orthonormal basis {vj}j=1,2,3 of
eigenvectors of the matrix in (4.8), with v3 = r/|r|. Then, we obtain that the components {vTj ρqv3}j=1,2,3

play no role in the data model (4.4), so we can only estimate (vTj ρqvl)j,l=1,2. This ambiguity is due to the
scaling relation a/|r| � 1 and it implies that only the transverse components of the electric field are needed
in imaging, as the longitudinal component along v3 adds no information. If the reflectivity tensor does not
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Fig. 4.3. Top line: The components vTj ρqvl of the reflectivity matrix, for j = l = 1 (left plot), j = l = 2 (middle plot) and

j = 1, l = 2 (right plot). The orthonormal basis (vj)j=1,2,3 depends on the center location r of the sub-aperture (the ordinate

in meters). The abscissa is the cross-range location indexed by q, in units of λLo/A. Bottom line: The reconstruction.

change over directions, or it changes slowly, then the ambiguity can be overcome by taking into consideration
the multiple sub-apertures, because r changes orientation from one sub-aperture to another.

4.2. Numerical results. The setup for the numerical results is the same as the one used in section 3.4
to obtain Figures 3.3–3.4. The data are generated using the single scattering model (4.1), for a reflectivity
function that changes with the direction of illumination and is supported at two points at distance of order
λLo/A, where Lo = |ro − y|.

We display in Figure 4.2 the six entries of the row vectors xq→ defined in (4.10), as r varies in the
large aperture, and for points in Ω indexed by q, separated by distances λLo/A in cross-range. The plots in
the bottom line of Figure 4.2 show that the MMV method gives a good estimate of these row vectors, for
noiseless data.

In Figure 4.3 we display the components (vTj ρqvl)j,l=1,2 of the reflectivity matrix ρq and its reconstruc-
tion, for each sub-aperture centered at r. As in the note at the end of the previous section, we let {vj}j=1,2,3

be the orthonormal basis of eigenvectors of the approximation (4.8) of the Green’s tensor, with v3 along r.
The reconstruction displayed in Figure 4.3 is calculated as follows: With the estimated vectors xq→ displayed
in Figure 4.2 we calculate the minimum `2 norm solution of (4.10), using the truncated SVD of the singular
matrix Γ(r). This corresponds to setting to zero the components vTj ρqvl of the estimated ρq, for either j
or l equal to 3. The other components are displayed in the figure, and they are well reconstructed.

5. Proofs. Here we prove the results stated in section 2.2. We begin with a Lemma, in section 5.1,
which we then use in sections 5.2 and 5.3 to prove Theorems 2.1 and 2.2. Proposition 2.3 is proved in section
5.4 and the results for the clusters are proved in section 5.5.

5.1. A basic lemma. Let us denote by X̂ the matrix obtained by normalizing the nonzero rows in X,
the unknown in the inverse problem,

x̂q→ =
xq→

‖xq→‖2
, q ∈ S, (5.1)
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where ‖ · ‖ is the norm induced by the usual Hermitian inner product. Introduce the linear operator
L : CNr×Nv → C defined by

L(V ) = tr
[
(GX̂)?V

]
, ∀V ∈ CNr×Nv , (5.2)

where tr[·] denotes the trace. We have the following result:

Lemma 5.1. The linear operator L defined in (5.2) satisfies the inequality∣∣L(V )
∣∣ ≤ ‖(G?V )S→‖1,2, (5.3)

for any V ∈ CNr×Nv . The matrix X satisfies the inequality

‖X‖1,2
(
1−INv

)
≤
∣∣L(GX)

∣∣, (5.4)

and with r, Xε,r and Eε,r defined as in Theorem 2.1, we have∣∣L(GXε,r)
∣∣ ≤ (1 + INv

)
‖Xε,r‖1,2, (5.5)∣∣L(GEε,r)

∣∣ ≤ (1− r + INv

)
‖Eε,r‖1,2. (5.6)

Proof. We start with definition (5.2), and use the invariance of the trace under cyclic permutations, and
the row support S of X, to obtain

L(GX) = tr
[
(GX̂)?GX

]
= tr

[
X̂?G?GX

]
= tr

[
XX̂?G?G

]
=
∑
j,q∈S

(XX̂?)j,q(G?G)q,j

=
∑
j,q∈S

〈xj→, x̂q→〉 〈gq, gj〉 .

We rewrite this further with the normalization condition (2.15) and definition (2.13), and use the triangle
inequality to obtain the bound∣∣L(GX)

∣∣ =
∣∣∣∑
q∈S

[
〈xq→, x̂q→〉 〈gq, gq〉+

∑
j∈S\{q}

〈xj→, x̂q→〉 〈gq, gj〉
]∣∣∣

=
∣∣∣∑
q∈S
‖xq→‖2

[
1 +

∑
j∈S\{q}

µ(xj→,xq→)µ(gq, gj)
]∣∣∣

≥
∑
q∈S
‖xq→‖2

[
1−

∑
j∈S\{q}

|µ(xj→,xq→)||µ(gq, gj)|
]∣∣∣

≥
∑
q∈S
‖xq→‖2(1−INv

).

The result (5.4) follows from definition (2.9) of the matrix norm ‖X‖1,2.

Similarly,

L(GXε,r) =
∑
j∈Sε

∑
q∈S

〈
xε,r
j→, x̂q→

〉
〈gq, gj〉 =

∑
j∈Sε

‖xε,r
j→‖2

∑
q∈S

µ(xε,r
j→, x̂q→)µ(gq, gj),
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where xε,r
j→ denotes the j–th row of Xε,r. Using the decomposition (2.26) of the row support Sε of Xε,r,

∣∣L(GXε,r)
∣∣ =

∣∣∣∑
i∈S

∑
j∈Si

‖xε,r
j→‖2

∑
q∈S

µ(xε,r
j→, x̂q→)µ(gq, gj)

∣∣∣
=
∣∣∣∑
i∈S

∑
j∈Si

‖xε,r
j→‖2

[
µ(xε,r

j→, x̂i→)µ(gi, gj) +
∑

q∈S\{i}

µ(xε,r
j→, x̂q→)µ(gq, gj)

]∣∣∣.
By the construction in (2.26), for any j ∈ Si, the index n(j) ∈ S of the nearest point to yj is n(j) = i, so
the sum in q is over the set S \{n(j)}. Using the triangle inequality and the definition (2.13) of INv

, we get

∣∣L(GXε,r)
∣∣ ≤∑

i∈S

∑
j∈Si

‖xε,r
j→‖2

[
|µ(xε,r

j→, x̂i→)µ(gi, gj)|+
∑

q∈S\{n(j)}

|µ(xε,r
j→, x̂q→)|µ(gq, gj)|

]
≤
∑
i∈S

∑
j∈Si

‖xε,r
j→‖2(1 + INv

)

=
∑
j∈Sε

‖xε,r
j→‖2(1 + INv ).

Since Sε is the row support of Xε,r, we can extend the sum to 1 ≤ j ≤ Ny, and the result (5.5) follows from
the definition of the ‖ · ‖1,2 norm.

To prove (5.6), recall that Eε,r is supported by definition outside the r–vicinity of S, in the set

Bc
r(S) = {1, . . . , Ny} \Br(S).

Then, if we denote by eε,rj→ the rows of Eε,r, we have

L(GEε,r) =
∑

j∈Bc
r(S)

∑
q∈S

〈
eε,rj→, x̂q→

〉
〈gq, gj〉

=
∑

j∈Bc
r(S)

‖eε,rj→‖2
∑
q∈S

µ(eε,rj→, x̂q→)µ(gq, gj)

=
∑

j∈Bc
r(S)

‖eε,rj→‖2
[
µ(eε,rj→, x̂n(j)→)µ(gn(j), gj) +

∑
q∈S\{n(j)}

µ(eε,rj→, x̂q→)µ(gq, gj)
]
.

Taking the absolute value and using the triangle inequality and definition (2.13) of INv
, we obtain the bound

∣∣L(GEε,r)
∣∣ ≤ ∑

j∈Bc
r(S)

‖eε,rj→‖2
[
|µ(eε,rj→, x̂n(j)→)||µ(gn(j), gj)|+ INv

]
.

But |µ(eε,rj→, x̂n(j)→)| ≤ 1 and |µ(gn(j), gj)| = 1 −D(j, n(j)), with D(j, n(j)) ≥ r for any j ∈ Bc
r(S), so the

bound becomes

∣∣L(GEε,r)
∣∣ ≤ ∑

j∈Bc
r(S)

‖eε,rj→‖2(1− r + INv ).

We can extend the sum to 1 ≤ j ≤ Ny because Eε,r is supported in Bc
r(S), and the result (5.6) follows from

the definition of the ‖ · ‖1,2 norm.
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Finally, for any V ∈ CNr×Nv , we obtain using the invariance of the trace to cyclic permutations that

L(V ) = tr
[
(GX̂)?V

]
= tr

[
X̂?G?V

]
= tr

[
G?V X̂?

]
=

Ny∑
j=1

〈(
G?V )j→, x̂j→

〉
=
∑
j∈S

〈(
G?V )j→, x̂j→

〉
,

where the last equality is because X is row supported in S. Taking the absolute value and using the triangle
and Cauchy-Schwartz inequalities we get∣∣L(V )

∣∣ ≤∑
j∈S

∣∣ 〈(G?V )j→, x̂j→
〉 ∣∣

≤
∑
j∈S
‖
(
G?V )j→‖2

= ‖
(
G?V )S→‖1,2.

This is the result (5.3) in the lemma.

5.2. Proof of Theorem 2.1. The bound (2.19) follows from the definition of W ε and the triangle
inequality,

‖W ε‖F = ‖DW −GXε −W ‖F ≤ ‖DW −GXε‖F + ‖W ‖F ≤ 2ε,

where we used the assumption (2.12) and that Xε is the minimizer of (2.11).
Using again the definition of W ε and the linearity of the operator (5.2), we write

L(GX) + L(W ε) = L(GX +W ε) = L(GXε) = L(GXε,r) + L(GEε,r),

where the last equality is by the decomposition (2.20). The result (5.4) in Lemma 5.1 gives

‖X‖1,2(1−INv
) ≤

∣∣L(GX)| =
∣∣L(GXε,r) + L(GEε,r)− L(W ε)

∣∣,
and using the triangle inequality and the estimates (5.3), (5.5) and (5.6), we get

‖X‖1,2(1−INv
) ≤

∣∣L(GXε,r)
∣∣+
∣∣L(GEε,r)|+

∣∣L(W ε)
∣∣

≤ (1 + INv
)‖Xε,r‖1,2 + (1− r + INv

)‖Eε,r‖1,2 + ‖(G?W ε)S→‖1,2. (5.7)

Note that by (2.10) and (2.12),

‖GX −DW ‖F = ‖W ‖F < ε,

so since Xε is the minimizer of (2.11), we must have

‖Xε‖1,2 ≤ ‖X‖1,2. (5.8)

We also have from the decomposition (2.20) of Xε in the matrices Xε,r and Eε,r with disjoint row support
that

‖Xε‖1,2 = ‖Xε,r +Eε,r‖1,2 = ‖Xε,r‖1,2 + ‖Eε,r‖1,2. (5.9)

Substituting in (5.7) we get

‖Xε‖1,2(1−INv
) ≤ (1 + INv

)(‖Xε‖1,2 − ‖Eε,r‖1,2) + (1− r + INv
)‖Eε,r‖1,2 + ‖(G?W ε)S→‖1,2

= (1 + INv
)‖Xε‖1,2 − r‖Eε,r‖1,2 + ‖(G?W ε)S→‖1,2,

and the result (2.21) stated in the theorem follows. �
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5.3. Proof of Theorem 2.2. Let us start with the definition of the matrices W ε, Xε,r and Eε,r given
in Theorem 2.1, and write

GXε = G(Xε,r +Eε,r) = GX +W ε.

With the decomposition (2.23) of Xε,r, we get

G(X −Xε,r) = GEε,r +GEε,r −W ε, (5.10)

and we prove next the analogue of the result (5.7) for X replaced by the matrix X−Xε,r and Xε,r replaced
by 0. Looking at the proof of (5.4) in section 5.1, we note that we only used that X has row support in S.
The same holds for the matrix X −Xε,r, so we can write directly the analogue of (5.4)

‖X −Xε,r‖1,2(1−INv
) ≤

∣∣∣L(G(X −Xε,r)
)∣∣∣. (5.11)

The right hand side in this equation can be estimated using (5.10) and the linearity of the operator L,∣∣∣L(G(X −Xε,r)
)∣∣∣ =

∣∣∣L(GEε,r) + L(GEε,r −W ε)
∣∣∣ ≤ ∣∣∣L(GEε,r)

∣∣∣+
∣∣∣L(GEε,r −W ε)

∣∣∣.
Substituting in (5.11) and using the estimates (5.6) and (5.3), with V replaced by GEε,r −W ε, we obtain

‖X −Xε,r‖1,2(1−INv ) ≤ (1− r + INv )‖Eε,r‖1,2 +
∥∥∥(G?(GEε,r −W ε)

)
S→

∥∥∥
1,2
.

But, by equation (2.25), (
G?GEε,r)S→ = G?

SGEε,r = 0,

and the desired estimate is

‖X −Xε,r‖1,2(1−INv
) ≤ (1− r + INv

)‖Eε,r‖1,2 +
∥∥∥(G?W ε)

)
S→

∥∥∥
1,2
. (5.12)

Next, we substitute the bound (2.21) on the error term Eε,r in (5.12), and obtain after simple algebraic
manipulations that

‖X −Xε,r‖1,2 ≤
2INv

(1− r + INv
)

r(1−INv )
‖Xε‖1,2 +

(1 + INv
)

r(1−INv )

∥∥∥(G?W ε)
)
S→

∥∥∥
1,2
. (5.13)

The assumption 2INv
< r < 1 implies that

1− r + INv
≤ 1− 2INv

+ INv
= 1−INv

,

and moreover

1 + INv

1−INv

<
1 + INv

1− r/2
< 2(1 + INv

) < 3.

Substituting in (5.13) we obtain the result (2.28) of Theorem 2.2.
It remains to prove the estimate (2.29). We begin with the identity

Xε,r −Xε,r = Xε,r −Xε,r − Eε,r,

and use equation (2.25) to conclude that

G?
SG(Xε,r −Xε,r) = G?

SG(Xε,r −Xε,r).
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By construction, both Xε,r and Xε,r are row supported in S, so we can rewrite this equation as

(Xε,r −Xε,r)S→ − (I −G?
SGS)(Xε,r −Xε,r)S→ = G?

SG(Xε,r −Xε,r), (5.14)

where I is the |S| × |S| identity matrix. We now estimate each term in this equation.

For the right hand side in (5.14) we have

‖G?
SG(Xε,r−Xε,r)‖1,1 =

∑
q∈S

Nv∑
v=1

∣∣∣(G?
SG(Xε,r −Xε,r)

)
q,v

∣∣∣
=
∑
q∈S

Nv∑
v=1

∣∣∣ Ny∑
j=1

(G?
SG)q,j(X

ε,r −Xε,r)j,v

∣∣∣
=
∑
q∈S

Nv∑
v=1

∣∣∣ ∑
j∈S∪Sε

µ(gq, gj)(X
ε,r −Xε,r)j,v

∣∣∣
=
∑
q∈S

Nv∑
v=1

∣∣∣ ∑
j∈S∪Sε\Sq

µ(gq, gj)(X
ε,r −Xε,r)j,v +

∑
j∈(S∪Sε)∩Sq

µ(gq, gj)(X
ε,r −Xε,r)j,v

∣∣∣, (5.15)

where the first two equalities are by the definition of the norm and of the matrix product, and the third
equality uses the definition (2.14) and the row support S ∪Sε of Xε,r−Xε,r. Now let us recall the definition
(2.27) of Xε,r, and the decomposition (2.26) of the support Sε of Xε,r, to obtain∑

j∈(S∪Sε)∩Sq

µ(gq, gj)X
ε,r
j,v =

∑
j∈Sq

µ(gq, gj)X
ε,r
j,v = Xε,r

q,v ,

and

Xε,r
j,v = Xε,r

q,v δj,q, ∀ j ∈ Sq,

where δj,q is the Kronecker delta symbol. Since µ(gq, gq) = 1, we conclude that the second term in (5.15)
vanishes and the result becomes

‖G?
SG(Xε,r −Xε,r)‖1,1 =

∑
q∈S

Nv∑
v=1

∣∣∣ ∑
j∈S∪Sε\Sq

µ(gq, gj)(X
ε,r −Xε,r)j,v

∣∣∣
≤

Nv∑
v=1

∑
q∈S

∑
j∈S∪Sε\Sq

|µ(gq, gj)|
∣∣∣(Xε,r −Xε,r)j,v

∣∣∣. (5.16)

Note that the set {(j, q) : j ∈ S ∪Sε \Sq, q ∈ S} is the same as the set {(j, q) : j ∈ S ∪Sε, q ∈ S \ {n(j)}},
so we can rewrite (5.16) as

‖G?
SG(Xε,r −Xε,r)‖1,1 ≤

Nv∑
v=1

∑
j∈S∪Sε

∣∣∣(Xε,r −Xε,r)j,v

∣∣∣ ∑
q∈S\{n(j)}

|µ(gq, gj)|.

The last sum in this equation is bounded above by the interaction coefficient I1, and using the definition of
the ‖ · ‖1,1 norm we get

‖G?
SG(Xε,r −Xε,r)‖1,1 ≤ I1‖Xε,r −Xε,r‖1,1. (5.17)
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With a similar calculation we obtain

∥∥∥(I −G?
SGS)(Xε,r −Xε,r)

∥∥∥
1,1

=
∑
q∈S

Nv∑
v=1

∣∣∣∑
j∈S

(G?
SGS − I)q,j(X

ε,r −Xε,r)j,v

∣∣∣
≤
∑
j∈S

Nv∑
v=1

|(Xε,r −Xε,r)j,v|
∑
q∈S
|µ(gq, gj)− δq,j |

=
∑
j∈S

Nv∑
v=1

|(Xε,r −Xε,r)j,v|
∑

q∈S\{j}

|µ(gq, gj)|,

where we used the triangle inequality, the identity (G?
SGS)q,j = µ(gq, gj) and µ(gq, gq) = 1. The last sum

is bounded above by the interaction coefficient I1, and using that Xε,r −Xε,r is row supported in S, and
the definition of the ‖ · ‖1,1 norm, we get∥∥∥(I −G?

SGS)(Xε,r −Xε,r)
∥∥∥

1,1
≤ I1‖Xε,r −Xε,r

∥∥∥
1,1
. (5.18)

Gathering the results (5.14), (5.17)–(5.18), and using the triangle inequality, we obtain the bound

(1−I1)‖Xε,r −Xε,r‖1,1 ≤ I1‖Xε,r −Xε,r‖1,1 ≤ I1

(
‖Xε,r‖1,1 + ‖Xε,r‖1,1

)
. (5.19)

We also have from the definition (2.27) and the inequality |µ(gj , gl)| ≤ 1 for all j, l = 1, . . . , Ny, that

‖Xε,r‖1,1 ≤ ‖Xε,r‖1,1.

The estimate (2.29) in Theorem 2.2 follows by substituting this in (5.19). �

5.4. Proof of Proposition 2.3. Recall the definition (5.1) of the unit row vectors x̂q→. Because the
rows of X are assumed orthogonal in the proposition, {x̂q→, q ∈ S} is an orthonormal subset of C1×Nv , and
we conclude from Bessel’s inequality that∑

q∈S\{n(j)}

| 〈v→, x̂q→〉 |2 ≤ ‖v→‖22, ∀ v→ ∈ C1×Nv and j = 1, . . . , Ny.

Dividing both sides in this equation by ‖v→‖22 and recalling definition (2.18), we obtain∑
q∈S\{n(j)}

|µ(v→, x̂q→)|2 ≤ 1, ∀ v→ ∈ C1×Nv and j = 1, . . . , Ny. (5.20)

For a given j and v, we define the vector ν(j,v→) ∈ R1×(|S|−1) with entries |µ(v→, x̂q→)|. Recall also from
section 2.2.3 the vector γ(j) ∈ R1×(|S|−1) with entries |µ(gj , gq)|, for q ∈ S \ {n(j)}, which is a set with
cardinality |S| − 1. Using these vectors, we have

sup
v→∈C1×Nv

∑
q∈S\{n(j)}

|µ(gj , gq)||µ(v→, x̂q→)| = sup
ν(j,v→)∈R1×|S|−1,‖ν(j,v→)‖≤1

(
ν(j,v→),γ(j)

)
= ‖γ(j)‖2,

where (·, ·) denotes the Euclidian inner product in R1×|S|−1 and we used inequality (5.20) to conclude that
ν(j) must lie in the unit ball in R1×|S|−1. The last equality is because the sup is achieved for

ν(j,v→) = γ(j)/‖γ(j)‖2.

Substituting in the definition (2.13), we obtain the result (2.30). �
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5.5. Proof of cluster results. The proof of Theorem 2.5 is the same as in section 5.2, withX replaced
by U , S replaced by C and W replaced by W . This leads to the estimate

‖Eε,r‖1,2 ≤
2I U

Nv

r
‖Xε‖1,2 +

1

r

∥∥(G?G(Xε −X +R)
)
C→

∥∥
1,2
, (5.21)

where we used that U = X −R in the last term. But equation (2.38) implies that

G†CGR = G†CG(X −U) = G†CGX −G
†
CGCUC→ = 0, (5.22)

where the second equality is because U is row supported in C. Thus, we have

G†CGR = (G?
CGC)

−1G?
CGR = 0 and therefore G?

CGR = 0. (5.23)

This shows that the residual R plays no role in the last term in (5.21),∥∥(G?G(Xε −X +R)
)
C→

∥∥
1,2

=
∥∥(G?G(Xε −X)

)
C→

∥∥
1,2

=
∥∥(G?W ε

)
C→

∥∥
1,2
, (5.24)

as stated in Theorem 2.5. �
The proof of Theorem 2.6 is exactly the same as in section 5.3. Note that the estimate (2.29) applies

to the matrix X and its projection U and aggregation X defined relative to the set C, instead of S. Thus,
(2.50) follows directly from (2.29). �

It remains to prove Lemma 2.4. Recall that U is defined via the projection (2.38). This induces a linear
operator T : CNr×Nv → CNr×Nv that maps GX to GU ,

GU = TGX. (5.25)

Note that GU = TGU and since (5.23) gives

0 = G?
CGR = G?

CG(X −U) = G?
C(GX − TGX), (5.26)

T is the orthogonal projection onto the range of GC .
Our goal is to estimate

‖GR‖2F = ‖G(X −U)‖2F =

Nv∑
v=1

‖G(xv − uv)‖22 =

Nv∑
v=1

‖Gxv − TGxv‖22, (5.27)

where we note that since T is the orthogonal projection on range(GC),

‖Gxv − TGxv‖2 ≤ ‖Gxv − z)‖2, ∀ z ∈ range(GC). (5.28)

We use this inequality for z = GX = GCXC→, and obtain

‖Gxv − TGxv‖2 ≤ ‖Gxv −Gxv)‖2 =
∥∥∥∑

j∈S
Xj,vgj −

∑
j∈C

Xj,vgj

∥∥∥
2
, (5.29)

because X is row supported in S and X is row supported in C. Next, using the decomposition (2.35) of S
and the definition (2.36) of X, we have∥∥∥∑

j∈S
Xj,vgj −

∑
j∈C

Xj,vgj

∥∥∥
2

=
∥∥∥∑

j∈C

∑
l∈Sj

Xl,vgl −
∑
j∈C

[ ∑
l∈Sj

Xl,vµ(gj , gl)
]
gj

∥∥∥
2

=
∥∥∥∑

j∈C

∑
l∈Sj

Xl,v

[
gl − µ(gj , gl)gj

]∥∥∥
2
. (5.30)

We can bound this using the triangle inequality and∥∥gl − µ(gj , gl)gj
∥∥2

2
= 〈gl − µ(gj , gl)gj , gl − µ(gj , gl)gj〉 = 1− |µ(j, l)|2 ≤ 2D(j, l), (5.31)
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where we used the definition of the semimetric D and of µ. Since Sj is contained within a ball of radius rC
centered at j ∈ C, we have D(j, l) ≤ rC in (5.31), and gathering the results (5.29)–(5.31), we get

‖Gxv − TGxv‖2 ≤
√

2rC
∑
j∈C

∑
l∈Sj

|Xl,v| =
√

2rC‖xv‖1. (5.32)

Finally, substituting in (5.27),

‖GR‖2F ≤ 2rC

Nv∑
v=1

(
‖xv‖1)2 = 2rC‖XT ‖22,1, (5.33)

as stated in the Lemma. �

6. Summary. We presented a resolution theory for synthetic aperture radar (SAR) imaging using the
multiple measurement vector (MMV) approach, also known as simultaneously sparse optimization. This
seeks to find an unknown matrix X with sparse row support, by inverting a linear system of equations
using sparsity promoting convex optimization. In the SAR imaging application, X models the unknown
reflectivity of a scattering scene. The rows of X are indexed by the points in the imaging region, and the
columns correspond to its values for multiple views of the imaging scene, from different sub-apertures and
polarization diverse measurements.

The resolution theory does not pursue the question of exact recovery, but seeks to estimate the neighbor-
hood of the support of X where the largest entries in the reconstruction lie. The radius of this neighborhood
represents the resolution limit and it depends on the noise level. We introduced a quantifier of how the
unknowns influence each other in imaging, called the multiple view interaction coefficient, and showed that
the smaller this is and the weaker the noise, the better the estimate of the support of X. We also quantified
the error of the reconstruction and studied the advantage of having multiple views. The existing literature
shows that the MMV method does not always perform better than sparsity promoting optimization with a
single view, the so-called single measurement vector (SMV) formulation. We showed that if the rows of X
are orthogonal, then the MMV approach is expected to perform better, depending on how the unknowns
are distributed in the imaging scene. We quantified this advantage and explained how the condition of
orthogonality of the rows of X arises in the application of SAR imaging of direction dependent reflectivity.

We also studied imaging of well-separated clusters of scatterers and showed that the MMV approach
gives a reconstruction supported near these clusters, with values near the net reflectivity of the clusters.

Acknowledgments. This material is based upon work supported by the Air Force Office of Scientific
Research under award number FA9550-15-1-0118.

Appendix A. Proof of Proposition 3.1. We begin with the Taylor expansion of the exponent in
(3.21) with respect to the arclength r

k
(ro + rτ1 − y)

|ro + rτ1 − y|
· (yq − yl) = kmo · (yq − yl) + kr

τ1 · Po(yq − yl)
|ro − y|

+ . . . , (A.1)

with mo and Po defined in (3.24). We suppose that the aperture A and the cross-range offset between yq
and yl are small enough so we can neglect the higher terms‡‡ in (A.1). Then, (3.21) may be estimated by

|µ(xq→,xl→)| ≈
A
∣∣∣ψq,l(A/2)eiQ/2 − ψq,l(−A/2)e−iQ/2 −

∫ A/2

−A/2
dr ψ′q,l(r)e

irQ/A
∣∣∣

|Q|‖ψq,q‖1/2
L1(−A/2,A/2)‖ψl,l‖1/2

L1(−A/2,A/2)

. (A.2)

If the reflectivities are independent of direction, (A.2) becomes |µ(xq→,xl→)| ≈ |sinc(Q/2)|. This attains
its maximum at Q = 0 i.e., at q = l, and decays as 1/|Q|, as stated in the proposition. It remains to show

‡‡The results are qualitatively the same if we include quadratic terms in r and neglect cubic and higher order terms. The
discussion is simpler if we consider only the shown terms in (A.1).
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that the result extends to reflectivities that vary smoothly with direction. We obtain from (A.2), using the
triangle inequality, that

|µ(xq→,xl→)| ≤
A
[
|ψq,l(A/2)|+ |ψq,l(−A/2)|+ ‖ψ′q,l‖L1(−A/2,A/2)

]
|Q||‖ψq,q‖1/2

L1(−A/2,A/2)|‖ψl,l‖1/2
L1(−A/2,A/2)

, (A.3)

and we estimate next the three terms in the numerator.
We begin with |ψq,l(A/2), which satisfies

|ψq,l(A/2)| ≤ |ψq,l(s)|+
∣∣∣ ∫ A/2

s

dr ψ′q,l(r)
∣∣∣, (A.4)

by the fundamental theorem of calculus and the triangle inequality. Therefore,

A|ψq,l(A/2)| =
∫ A/2

−A/2

ds |ψq,l(A/2)|

≤
∫ A/2

−A/2

ds |ψq,l(s)|+
∫ A/2

−A/2

ds
∣∣∣ ∫ A/2

s

dr ψ′q,l(r)
∣∣∣

≤ ‖ψq,l‖L1(−A/2,A/2) +

∫ A/2

−A/2

ds

∫ A/2

−A/2

dr
∣∣ψ′q,l(r)∣∣

= ‖ψq,l‖L1(−A/2,A/2) +A‖ψ′q,l‖L1(−A/2,A/2). (A.5)

The first term in this equation can be bound using the Cauchy-Schwartz inequality, once we recall the
definition (3.22) of ψq,l. We rewrite this definition as

ψq,l(r) = ξq(ro + rτ1)ξ?l (ro + rτ1), (A.6)

in an abuse of notation, so that

ξq,v = ξq(rv), rv = ro +
( v − 1

Nv − 1
− 1

2

)
Aτ1.

Then, we have

L2‖ψq,l‖L1(−A/2,A/2) =

∫ A/2

−A/2

dr |ξq(ro + rτ1)ξ?l (ro + rτ1)|

≤

[∫ A/2

−A/2

dr |ξq(ro + rτ1)|2
]1/2 [∫ A/2

−A/2

dr |ξl(ro + rτ1)|2
]1/2

= ‖ψq,q‖1/2
L1(−A/2,A/2)‖ψl,l‖1/2

L1(−A/2,A/2). (A.7)

We also have from (A.6) that

ψ′q,l(r) = τ1 · ∇ξq(ro + rτ1)ξ?l (ro + rτ1) + ξq(ro + rτ1)τ1 · ∇ξ?l (ro + rτ1), (A.8)

and obtain using the Cauchy-Schwartz and triangle inequalities that

‖ψ′q,l‖L1(−A/2,A/2) ≤ ‖τ1 · ∇ξq‖L2(−A/2,A/2)‖ξl‖L2(−A/2,A/2) + ‖ξq‖L2(−A/2,A/2)‖τ1 · ∇ξl‖L2(−A/2,A/2)

≤ ‖∇ξq‖L2(−A/2,A/2)‖ξl‖L2(−A/2,A/2) + ‖ξq‖L2(−A/2,A/2)‖∇ξl‖L2(−A/2,A/2). (A.9)

To estimate this further, let us introduce the constant Kq, which depends on the scale of variation of the
reflectivity ξq, such that

‖∇ξq‖L2(−A/2,A/2) ≤
Kq

A
‖ξq‖L2(−A/2,A/2). (A.10)
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Since ‖ξq‖L2(−A/2,A/2) = ‖ψq,q‖1/2
L1(−A/2,A/2), by definition (A.6), we obtain from (A.9)–(A.10) that

A‖ψ′q,l‖L1(−A/2,A/2) ≤ (Kq +Kl)‖ψq,q‖1/2
L1(−A/2,A/2)‖ψl,l‖1/2

L1(−A/2,A/2). (A.11)

The estimate (A.5) becomes

A|ψq,l(A/2)| ≤ (1 +Kq +Kl)‖ψq,q‖1/2
L1(−A/2,A/2)‖ψl,l‖1/2

L1(−A/2,A/2), (A.12)

and a similar bound applies to A|ψq,l(−A/2)|.
Gathering the results (A.11)–(A.12) and substituting in (A.3), we obtain the statement of the proposition,

with Cq,l = 12π(1 +Kq +Kq). �

Appendix B. Expression of matrix Γ(r). The 6 × 6 matrix Γ(r) that enters the data model (4.9)
can be written as

Γ(r) = Γdiag(r) + Γoff-diag(r)

where

Γdiag(r) = diagonal
(

(1− η2
1)2, (1− η2)2, (1− β2)2, (1− η2

1)(1− η2
2) + (η1η2)2,

(1− η2
1)(1− β2) + (η1β)2, (1− η2

2)(1− β2) + (η2β)2
)
,

is the diagonal part of Γ(r) and

Γoff-diag(r) =


0 (η1η2)2 (η1β)2 η1η2(η21 − 1) η1β(η21 − 1) η21η2β

(η1η2)2 0 (η2β)2 η1η2(η22 − 1) η1η22β η2β(η22 − 1)
(η1β)2 (η2β)2 0 η1η2β2 η1β(β2 − 1) η2β(β2 − 1)

2η1η2(η21 − 1) 2η1η2(η22 − 1) 2η1η2β2 0 η2β(2η21 − 1) η1β(2η22 − 1)
2η1β(η21 − 1) 2η1η22β 2η1β(β2 − 1) η2β(2η21 − 1) 0 η1η2(2β2 − 1)

2η21η2β 2η2β(η22 − 1) 2η2β(β2 − 1) η1β(2η22 − 1) η1η2(2β2 − 1) 0


is its off-diagonal part.
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